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ABSTRACT 

Background: Accurate models are crucial to estimate the phenotypes from high throughput genomic data. While the 
genetic and phenotypic data are sensitive, secure models are essential to protect the private information. Therefore, 
construct an accurate and secure model is significant in secure inference of phenotypes. 

Methods: We propose a secure inference protocol on homomorphically encrypted genotype data with encrypted linear 
models. Firstly, scale the genotype data by feature importance with Xgboost or Adaboost then train linear models to predict 
the phenotypes in plaintext. Secondly, encrypt the model parameters and test data with CKKS scheme for secure inference. 
Thirdly, predict the phenotypes under CKKS homomorphically encryption computation. Finally, decrypt the encrypted 
predictions by client to compute the 1-NRMSE/AUC for model evaluation. 

Results: 5 phenotypes of 3000 samples with 20390 variants are used to validate the performance of the secure inference 
protocol. The protocol achieves 0.9548, 0.9639, 0.9673 (1-NRMSE) for 3 continuous phenotypes and 0.9943, 0.99290 
(AUC) for 2 category phenotypes in test data. Moreover, the protocol shows robust in 100 times of random sampling. 
Furthermore, the protocol achieves 0.9725 (the average accuracy) in an encrypted test set with 198 samples, and it only 
takes 4.32s for the overall inference. These help the protocol rank top one in the iDASH-2022 track2 challenge. 

Conclusion: We propose an accurate and secure protocol to predict the phenotype from genotype and it takes seconds to 
obtain hundreds of predictions for all phenotypes. 

INTRODUCTION 

The research on genotype-to-phenotype is crucial to 
uncover the gene functions and the mechanisms in distinct 
phenotypic outcomes Benfer et al. (2008). The high 
throughput genomic data makes it may be possible to 
predict the phenotype from genotype. While the inference 
of genotype to phenotype is a complex problem due to the 
intricate factors such as genotypes, epigenetic variants and 
their interactions Dowell et al. (2010). Moreover, an 
individual of same genotype may develop to thousands of 
different diseases, which makes it still a huge challenge in 
achieving accurate predictions for these phenotypes 
efficiently Lehner et al. (2013). Because of the sensitive 
nature of genotype and phenotype data, a secure and 
accurate model is essential for the secure inference of the 
predictions. 

Linear or logistic regression models are generally applied 
in Genome-wide association studies (GWASs) such as 
SNPTEST and PLINK Burton et al. (2007), Purcell et al. 
(2007), Marchini et al. (2007). However, the linear models 

may be overfitting because of the number of genotypes 
far exceed phenotypic outcomes.  

Regularized linear regression models such as ridge 
regression, lasso, elastic net and their extensions could 
overcome the overfitting problems and select a 
functional genotype set for phenotype estimations 
Rakitsch et al. (2012), Waldmann et al. (2013), Ogutu et 
al. (2012). While linear models could only capture 
additive effects, ensemble-based machining learning 
methods such as Xgboost or Adaboost could select the 
epistasis genotypes as well and may achieve better 
performance Banerjee et al. (2020). Either linear or non-
linear models assist to construct an accurate model to 
infer the phenotype from genotype. 

The sensitive nature of genotype and phenotype data 
urges to develop the secure inference models for 
phenotype prediction. Besides, the track 2 of iDASH-
2022 appeals to develop a secure model evaluation on 
homomorphic encrypted genotype data via protecting 
both model parameters and genotypes. 
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 Homomorphic encryption (HE) is a cryptosystem that 
enables homomorphic operations on encrypted data and 
is considered as one of the most important primitives for 
privacy-preserving applications. Most of the current HE 
schemes can be categorized into word-wise HE (such as 
BFV Fan et al. (2012). BGV Brakerski et al. (2014). and 
CKKS Cheon et al. (2017). and bit-wise HE (such as 
FHEW Ducas et al. (2015). and TFHE Chillotti et al. 
(2020).) Among these schemes, Cheon-Kim-Kim-Song 
(CKKS) is regarded as the unique scheme to support 
homomorphic operations on float/complex number 
naturally. Therefore, CKKS could be utilized to construct 
a secure inference of phenotype from genotype. 

To make the secure inference efficiently, we propose an 
accurate and secure inference protocol on homomorphic 
encrypted genotype data with encrypted linear models. 
Firstly, scale the genotype data by feature importance 
with Xgboost or Adaboost then train a linear model to 
predict the phenotypes in plaintext. Secondly, encrypt the 
model parameters and genotype data with CKKS for 
secure inference. Thirdly, predict the phenotypes under 
CKKS homomorphic encryption. Finally, decrypt the 
encrypted predictions by client to compute the 1-
NRMSE/AUC for model evaluation. 

METHODS 

Overview of the secure inference protocol 

The secure inference consists of three parties: Client, 
Modeler, and Evaluator. 198 samples with 20390 
features/variants are taken as an example to illustrate the 
details.  

Figure 1: The flowchart of the secure inference protocol. 

 

Step1: Client generates private key and public key and 
broadcasts the public keys to Modeler and Evaluator; 
Step 2: Client encrypts test data with the public key by 
diagonal coding and BSGS algorithm and CKKS 
homomorphic encryption then sends the encrypted 
results to Evaluator; Step 3: Modeler encrypts model 
parameters with received public key by CKKS 
homomorphic encryption then sends the encrypted  

results to Evaluator; Step 4: Evaluator executes 
homomorphically secure model inferences and sends the 
encrypted predictions to Client; Step 5: Client decrypts 
the ciphertext of predictions then the decrypted 
predictions are used for computing 1-NRMSE and AUC. 

Firstly, Client generates private key and public key (for 
encryption), relinearization keys (for ciphertext 
multiplication) and Galois keys (for ciphertext rotation), 
and broadcasts these public keys to Modeler and 
Evaluator; Secondly, Client encrypts test data with the 
public key by diagonal coding, BSGS algorithm and CKKS 
homomorphic encryption and sends the encrypted results 
to Evaluator; Thirdly, Modeler encrypts model parameters 
with received public key and sends the encrypted results 
to Evaluator; Fourthly, after receiving the encrypted test 
data matrix and encrypted model parameters, Evaluator 
executes homomorphically secure model inferences with 
received relinerization keys and Galois keys, and sends the 
encrypted predictions to Client; Finally, Client decrypts 
the ciphertext of predictions then the decrypted 
predictions are used for computing 1 − NRMSE and 
AUC. 

Linear models with feature importance for 
predictions of phenotype from genotype in plaintext 

𝑋 ∈ ℝ𝑚×𝑛 is the genotype matrix and 𝑋𝑖𝑗 denotes the 𝑗-th 

variant for 𝑖-th sample. 𝑌 ∈ ℝ𝑚×𝐾 is the phenotype matrix 

and 𝑌𝑖𝑘 denotes the 𝑘-th phenotype for 𝑖-th sample.   

Xgboost or Adaboost is used to obtain the feature 
importance for each phenotype then scale the raw 
genotype matrix by 

𝑋(𝑘) = 𝑋 ∗ 𝑑𝑖𝑎𝑔(𝐹k) 

Where 𝐹𝑘 is the feature importance for the 𝑘-th 
phenotype. 

If 𝑌𝑘 is the continuous phenotype, then the linear 
regression model should be 

𝑌𝑘 = 𝑋(𝑘) × 𝑀𝑘 + 𝑤0𝑘 + ε𝑘 

Where 𝑀𝑘 is the linear regression parameter and 𝑤0𝑘 is 
the intercept term. Let 

𝑊𝑘 = 𝑀𝑘 × 𝑑𝑖𝑎𝑔(𝐹𝑘) 

Then the final model is 

𝑌𝑘 = 𝑋 × 𝑊𝑘 + 𝑤0𝑘 

If 𝑌𝑘 is the category phenotype (i.e. 0 and 1), then the 
logistic regression model should be 

Pk= 
1

1+exp⁡(𝑋(𝑘)⨯𝑀𝑘+𝑊𝑜𝑘)
 

Where 𝑝𝑘 is the probability of predicting the phenotype to 
be 1. 
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 Similarity, the final model could be 

𝑝𝑘 =
1

1+exp⁡(𝑋×𝑊𝑘+𝑤𝑜𝑘)
 

In summary, both final models adopt the Linear Model 
with Feature Importance (LMFI) for phenotype inference. 

CKKS Scheme 

For a 2-power number 𝑁, we write 𝑅𝑁 = ℤ[𝑋]/(𝑋𝑁 + 1) 

and 𝑅𝑁,𝑞 = 𝑅𝑁/𝑞𝑅𝑁 ≡ ℤ𝑞[𝑋]/(𝑋𝑁 + 1). The lower-case 

letters with a “hat”symbol such as ̂a represents some 

element in 𝑅𝑛, and 𝑎𝑗 is denoted as the j-th coefficient of 

̂a. The dot symbol ⋅ such as ̂a ⋅ ̂b is denoted as the 
multiplication of ring elements. We use bold lower- case 

letters symbol such as 𝒂 to represent vectors, 𝒂[𝑗] to 

represent the 𝑗-th component of 𝒂, and 𝒂||𝒃 to represent 

the concatenation of vectors. Denote by 𝒂 ≪𝑘 the left-
hand-side rotation of the vector components. Denote by 

𝒂𝑻𝒃 the inner product of vectors and 𝒂 ∘ 𝒃 the Hadamard 
product of vectors, i.e., the element-wise multiplication. 
We use bold upper-case letters such as 𝑀 to denote 

matrices, and 𝑀[𝑖, 𝑗] to denote the (𝑖, 𝑗) entry of 𝑀. 

As ℤ[𝑋]/(𝑋𝑁 + 1) is isomorphic to ℂ𝑁/2, the ring structure 

allows us to encode a real vector 𝒗 ∈ ℝ𝑙 as a ring element 

of 𝑅𝑁,𝑞 with 𝑙 ≤ 𝑁/2. The addition/multiplication in 𝑅𝑛 
corresponds to element-addition/multiplication of the 

real(complex) vector 𝒗 ∈ ℝ𝑙. Denote by 𝐸𝑛𝑐𝑜𝑑𝑒(𝒗, 𝛥) ∈ 

𝑅𝑁,𝑞 and 𝐷𝑒𝑐𝑜𝑑𝑒(⁡̂𝑣, 𝛥, 𝑙) ∈ ℝ𝑙 the encoding of 𝒗 with a 

scaling factor Δ > 0, and the decoding of �̂� with a scaling 

factor Δ > 0 and a length 𝑙 > 0 respectively. 

The Ring Learning With Errors (RLWE) distribution 

RLWE𝑠(𝑁, 𝑞, 𝜒) with secret 𝑠 ∈ 𝑅𝑁 and error distribution 

𝜒 over 𝑅𝑁, produces pairs (𝑎, 𝑏) ∈ 𝑅𝑁,𝑞 where 𝑎 ← 𝑅𝑁,𝑞 is 

chosen uniformly at random, and 𝑏 = 𝑠 ⋅ 𝑎 + 𝑒 for 𝑒 ← 

𝜒.  

The decisional Ring LWE assumption over 𝑅𝑁 with error 

distribution 𝜒, secret distribution 𝜒′ and 𝑚 samples, states 

that when 𝑠 ← 𝜒′, the product distribution RLWE𝑠(𝑁, 𝑞, 

𝜒)𝑚 is pseudorandom, i.e., it is computationally 
indistinguishable from the uniform distribution over 

(𝑅𝑁,𝑞× 𝑅𝑁,𝑞)𝑚. As usual, 𝜒′ is the uniform distribution over 
𝑅𝑁,3 = 𝑅𝑁/3𝑅𝑁 and 𝜒 is the discrete Gaussian distribution. 

The security of CKKS scheme is based on RLWE 
Assumption. The following is the details of CKKS. 

1.The key generation algorithm picks 𝑠 ← 𝜒′, 𝑒 ← 𝜒, 𝑎 ← 

R𝑁,⁡ 𝑞, and outputs secret key 𝑠𝑘 = (−𝑠, 1) ∈ 𝑅2
𝑁,⁡ 𝑞 and 

public key 𝑝𝑘 = (𝑎, 𝑏) ∈ R2 
𝑁,⁡𝑞 where 𝑏 = 𝑠 ⋅ 𝑎 + 𝑒 follows 

the RLWE distribution. 

 

 

2.The encryption algorithm, 𝐸𝑛𝑐𝑝𝑘⁡(⁡̂𝒗) picks random 𝑢⁡
← {0,1}𝑁 and 𝑒 = (𝑒0, 𝑒1) ← 𝜒2 , and outputs 𝑐𝑡 = 𝑢 ⋅ 
𝑝𝑘 + 𝑒 + (0, ̂𝑣) ∈ 𝑅𝑞,𝑁 , where �̂� =𝐸𝑛𝑐𝑜𝑑𝑒(𝒗, Δ) 

3.The approximate decryption algorithm 𝐷𝑒𝑐𝑠𝑘(𝑐𝑡) 
outputs 𝒗 = 𝐷𝑒𝑐𝑜𝑑𝑒(�̂�, Δ) where �̂� = ⟨𝑠𝑘, 𝑐𝑡⟩ 𝑚𝑜𝑑 𝑞. 

By linearity of Enc, CKKS directly supports (bounded) 

addition of ciphertexts: if 𝑐𝑡0 = (𝑎0, 𝑏0) and 𝑐𝑡1 = (𝑎1, 𝑏1) 

are encryptions of 𝒗0 and 𝒗1 respectively, then the vector 

sum 𝑐𝑡0 + 𝑐𝑡1 = (𝑎0 + 𝑎1, 𝑏0 + 𝑏1) mod 𝑞 is an encryption 

of 𝒗0 + 𝒗1. The plaintext-ciphertext multiplication is �̂�0 ⋅ 
𝑐𝑡1 = (�̂�0 ⋅ 𝑎1, �̂�0 ⋅ 𝑏1) mod 𝑞 is an encryption of 𝒗0 ∘ 𝒗1, 

where �̂�0 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝒗, Δ). 

For homomorphic multiplication/rotation, extra public 

keys are needed. Denote by 𝐸𝐾/𝑅𝑜𝑡𝐾 the evaluation key 
for homomorphic multiplication/rotation, respectively. 

Slot-wise Multiplication: Using 𝐸𝐾, the product of two 

ciphertexts 𝑐𝑡0 = (𝑎0, 𝑏0), 𝑐𝑡1 = (𝑎1, 𝑏1) is computed as 

𝑀𝑢𝑙(𝑐𝑡0, 𝑐𝑡1; 𝐸𝐾) = 𝑐𝑡0 × 𝑐𝑡1 =(𝑎0𝑏0 + 𝑎1𝑏0, 𝑏0𝑏1) + 

𝑅𝑒𝐿𝑖𝑛(𝑎0𝑎1; 𝐸𝐾), where 𝑅𝑒𝐿𝑖𝑛(𝛼; 𝐸𝐾) = (𝛼0, 𝛼1) such 

that 𝛼0 + 𝛼1 ⋅ 𝑠𝑘 = 𝛼 ⋅ 𝑠𝑘2 + 𝑒 for some error 𝑒. 

Rotation: Given the ciphertext ct which encrypts 

𝐸𝑛𝑐𝑜𝑑𝑒(𝒗, Δ), an integer 𝑘 ∈ ℕ, and a rotation key 

𝑅𝑜𝑡𝐾, the operation 𝑅𝑜𝑡𝐿𝑘(𝑐𝑡; 𝑅𝑜𝑡𝐾) results in an 
CKKS ciphertext that encrypts the left-hand-side rotated 

vector 𝐸𝑛𝑐𝑜𝑑𝑒(𝒗 ≪ 𝑘, Δ). 

Rescale: Given the CKKS ciphertext ct which encrypts 

𝐸𝑛𝑐𝑜𝑑𝑒(𝒗, Δ), and a factor Δ′ ∈ ℝ, the operation 

𝑅𝑒𝑠𝑐𝑎𝑙𝑒(𝑐𝑡, Δ′) results in a ciphertext (with a smaller 

modulus) that encrypts 𝐸𝑛𝑐𝑜𝑑𝑒(𝒗, Δ/Δ′). 

Self-repeating: 𝐷𝑒𝑐𝑜𝑑𝑒(𝐸𝑛𝑐𝑜𝑑𝑒(𝒗 ∥ ⋯ ∥ 𝒗, 𝛥), 𝛥, 𝑙) = 

𝒗. In other words, the encoding of some self-repeating 
vectors can be viewed as the encoding of a single copy. 

Homomorphic Linear Evaluation 

There are some existing approaches to homomorphic 
linear evaluation, i.e., the homomorphic multiplication of 
plain matrix and encrypted vector Halevi et al. (2014), 
Juvekar et al. (2018), Lu et al. (2021). The method 
proposed by Wenjie Lu et al. could cover both “tall” and 
“short” matrices efficiently and it is proper for our 
solution Lu et al. (2021). The following is the details of 
the matrix encoding and the process of homomorphic 
linear evaluation. 

Algorithm 1. Matrix Encoding 

Input: A plain matrix 𝑀 ∈ ℝ𝑙×𝑛 with 𝑙 ≤ 𝑛 ≤ 𝑁/2 and a 
scaling factor Δ. 

Output: elements {�̂�𝑖 ∈ 𝑅𝑁} as encoded matrix. 
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1.Tiling and Diagonals. Define 𝑙 vectors {𝑚𝑗}𝑗=0

⁡𝑙−1

   by  

going through the rows and columns of 𝑀 

𝑚𝑗[𝑟] = 𝑀[𝑟 mod 𝑙, 𝑟 + 𝑗 mod 𝑛] for 𝑟 ∈ {0,1, ⋯ 𝑛} 

2.Let 𝑔 = ⌈√¯𝑙⌉ and 𝑏 = ⌈𝑙/𝑔⌉ , compute �̂�𝑖 = 

𝐸𝑛𝑐𝑜𝑑𝑒(𝒎𝑖1𝑔+𝑖2 ≫ 𝑖1𝑔, Δ) for 

𝑖1 ∈ {0,1, ⋯ , 𝑏 − 1} and 𝑖2 ∈ {0,1, ⋯ , 𝑔 − 1}. 

3.Output {m̂𝑖}𝑖=0
𝑙−1 

Algorithm 2. Homomorphic Linear Evaluation 

Input: 𝑐𝑡𝒛 ∈ 𝑅𝑁,𝑞 × 𝑅𝑁,𝑞 with 𝐸𝑛𝑐𝑜𝑑𝑒(𝒛, Δ𝑟) being 

encrypted. Rotation key 𝑅𝑜𝑡𝐾. Encoded matrix {�̂�𝑖 ∈ 𝑅𝑁} 

of 𝑀, which the column size is 𝑛. The scaling factor used 

to encode 𝑀 is Δ. 

output: ciphertext with encrypted 𝑀 ⋅ 𝒛. 

1.Let 𝑔 = ⌈√¯𝑙⌉. For 𝑖2 ∈ {0,1, ⋯, 𝑔 − 1}, compute 𝑐𝑖2 = 

𝑅𝑜𝑡𝐿𝑖2 (𝑐𝑡𝒛; 𝑅𝑜𝑡𝐾). 

2.Let b=[ 𝑙 /g]. Compute ct = 

∑ 𝑅𝑜𝑡𝐿𝑖1𝑔(∑ �̂�𝑖1𝑔+𝑖2.𝐶𝑖2

𝑔−1
𝑖2=0

𝑏−1

𝑖1=0
). 

3.Let 𝛾 = log(𝑛/𝑙) and 𝑐𝑡0 = 𝑐𝑡. Update iteratively for 1 ≤ 

𝑗 ≤ 𝛾 

𝑐𝑡𝑗 = 𝑅𝑜𝑡𝐿𝑙2j(𝑐𝑡𝑗−1) + 𝑐𝑡𝑗−1. 

4.Output 𝑅𝑒𝑠𝑐𝑎𝑙𝑒(𝑐𝑡𝛾, Δ) as 𝑐𝑡𝑜𝑢𝑡. 

The rectangular matrix 𝑀 is converted to a square matrix 
by repeating the rectangular matrix itself (called tiling) 

instead of expanding the rows (resp. cols) of 𝑀 with zero-
padding to be squared. A subset of the diagonals of the 
tiling matrix are constructed in Step 1 by looping through 

the rows and columns of 𝑀. This tiling is always possible 
without zero-padding because the number of rows and 

columns of 𝑀 is always a power-of-2 value. The baby-step-
giant-step (BSGS technique Cheon et al. (2019). in Step 2 
of Algorithm 1 and Algorithm 2 aims to sum up some 
products of plaintext-ciphertext with a specific offset of 
homomorphic rotations. Specifically,  

The term 𝑚𝑖1𝑔+𝑖2 >> 𝑖1𝑔 is executed before Encode in 

CKKS since the cost of homomorphic rotations on 

encrypted 𝒛 is expensive. 

In Step 2 of Algorithm 2. 𝑐𝑡 can be viewed as a ciphertext, 

which corresponds to the sum of the 𝑙 column vectors 

(each of size 𝑛/𝑙), i.e., the matrix multiplication of each 

𝑛/𝑙 columns of 𝑀 and 𝒛. The step 3 of Algorithm 2 aims 

to sum up the encrypted columns, resulting in 𝑐𝑡𝛾 that  

encrypts a self-repeating vector 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑀𝑧 ∥ ⋯ ∥ 𝑀𝑧, 

Δ𝑟Δ). It can just be viewed as 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑀𝒛, Δ𝑟Δ) 
according to the property of the encoding function. 

Finally, the 𝑅𝑒𝑠𝑐𝑎𝑙𝑒(⋅, Δ) is used to reach the same scaling 

factor of 𝑐𝑡𝒛. 

The overall computation consists of 𝑙 homomorphic 

multiplication and 𝑔 + 𝑏 + log 𝑛/𝑙 homomorphic 
rotations. 

Modification and Optimization 

For 𝑙 and 𝑛 not being power-of-2, we naturally extends 

the rows and columns of 𝑀 with zero padding to fit the 
matrix encoding requirement. The expanded matrix has 
both the row size and the column size of being power-of-
2. 

For 𝑛 larger than 𝑁/2, we split 𝑀 into distinct submatrix 

(𝑀1, 𝑀2, ⋯ , 𝑀𝑠), where 𝑀1 ∥ 𝑀2 ∥ ⋯ ∥ 𝑀𝑠 = 𝑀 and 

the column size of each submatrix is no more than 𝑁/2. 

Therefore, the encoding of 𝑀 is converted into the 

encoding of 𝑠 submatrix, which implies 𝑠 homomorphic 
linear evaluations. According to the linearity of 
homomorphic rotation, homomorphic multiplications in 
each homomorphic linear evaluation are firstly executed 
and summed together followed by the execution of 
homomorphic rotations, The number of executing 

homomorphic rotations is reduced from 𝑠 to only 
one.That is to say, the cost of homomorphic rotations are 
independent of the number of submatrices. 

Assume only homomorphic linear evaluation is needed, 

the encoding of 𝑀 can be improved by regarded two 
adjacent float rows as one complex row. That is, the same 
components of first row and second row are the real part 
and imaginary part of complex row respectively. With the 

improvement, the length of {�̂�𝑗} is reduced by nearly 
half. After homomorphic linear evaluation, the ciphertext 
is the encryption of the complex vector which the real part 
and imaginary part of each component is the adjacent 

component of 𝑀𝒛. With the modification of matrix 
encoding, the time complexity and space complexity of 
homomorphic linear evaluation are almost reduced by 
half. 

For homomorphic linear evaluation of encrypted matrix 
and encrypted vectors, the matrix is encrypted with 

{�̂�𝑖}i=0
𝑙−1, which are the outputs of Algorithm 1. 

Algorithm 2, ∑ �̂�𝑖1𝑔+𝑖2.⁡⁡𝐶𝑖2

𝑔−1
𝑖2=0

 is replaced by 

∑ 𝑀𝑢𝑙⁡(⁡𝑐𝑡𝑚̂̂𝑖1𝑔+𝑖2,𝐶𝑖2
, 𝑐𝑖2 ; 𝐸𝐾)

𝑔−1
𝑖2=𝑜

, where 𝑐𝑡𝑚̂̂𝑖1𝑔+𝑖2
 is 

the ciphertext of encrypted �̂�𝑖1𝑔+𝑖2,𝐶𝑖2
. Since the cost of 

𝑅𝑒𝑙𝑖𝑛 (⋅; 𝐸𝐾) is expensive, we can sum up multiple 

ciphertext before 𝑅𝑒𝑙𝑖𝑛 in the case of 𝑛 > 𝑁/2, i.e. 
multiple homomorphic linear evaluation of encrypted 
submatrix and encrypted sub-vector and ciphertext 
summation.  
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 That is to say, if we need to compute multiple-

multiplication-and-summation of between multiple 𝑐𝑡0,⁡𝑖 = 

(ao,i , bo,i) and 𝑐𝑡1,⁡ 𝑖 = (𝑎1,𝑖, 𝑏1,𝑖), then (𝑎0, 𝑖𝑏0, 𝑖 + 𝑎1,𝑖𝑏0,𝑖, 

𝑏0,𝑖𝑏1,𝑖) and 𝑎0,𝑖𝑎1,𝑖  are firstly computed and summed up. 
As input, ∑𝑖 𝑎0, 𝑖𝑎1, 𝑖 are executed by 𝑅𝑒𝑙𝑖𝑛 with 𝐸𝐾 

secondly.⁡Finally, the ∑𝑖 (𝑎0,𝑖𝑏0,𝑖 + 𝑎1,𝑖𝑏0,𝑖, 𝑏0,𝑖𝑏1,𝑖) and 

𝑅𝑒𝑙𝑖𝑛(∑𝑖 𝑎0,𝑖𝑎1,𝑖 ; 𝐸𝐾) are summed up, which is equivalent 

to ∑𝑖 𝑀𝑢𝑙(𝑐𝑡0,𝑖, 𝑐𝑡1,𝑖).  

Note that 𝑅𝑒𝑙𝑖𝑛 is executed only once, and the cost of 

expensive 𝑅𝑒𝑙𝑖𝑛 is independent of the number of 

ciphertext pairs ((𝑐𝑡𝑖,0, 𝑐𝑡𝑖,1)). 

Evaluation 

The performance of the secure inference protocol is 
evaluated by the model accuracy and the running time. 
Specifically, the model accuracy is achieved by 1-NRMSE 
for continuous phenotype and AUC for category 
phenotype. Here NRMSE of the k-th phenotype is 
calculated by 

NRMSEk =
√∑ (𝑦𝑖𝑘−ŷ𝑖𝑘)

2/𝑚̂𝑚
𝑖=1

max{𝑦𝑘}−min⁡{𝑦𝑘}
 

Where ŷ𝑖𝑘 is the prediction of the k-th phenotype for 

sample 𝑖. Let 

𝑆𝑘=⁡{
1 − 𝑁𝑅𝑀𝑆𝐸𝑘𝑌𝑘𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠

𝐴𝑈𝐶𝑘𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then the average model accuracy could be inferred by  

𝑆 =
1

𝑘
∑𝑆𝑘

𝑘

𝑘=1

 

Both the average accuracy and running time are adopted 
to evaluate the performance of the secure inference 
protocol in the iDASH-2022 track2 challenge. 

Datasets 

We validate the secure inference protocol in a genotype 
dataset containing 3000 samples with 20390 variants. Each 
variant typically contains three genotypes such as AA, Aa 
and aa. Besides, all the samples contain 5 phenotypes, 
where three are continuous phenotypes and two are 
category phenotypes (i.e. 0 and 1). Furthermore, 198 
samples are remaining for the blind test of the secure 
inference protocol. All these data are provided by the 
iDASH-2022 track2 

http://www.humangenomeprivacy.org/2022/. 

RESULTS 

LMFI outperform other methods in plaintext 

To demonstrate the performance of LMFI in the 
inference of phenotype from genotype, we applied it to 
the dataset containing 5 phenotypes of 3000 samples with  

20390 variants, and ten percent of the dataset is randomly 
selected as test data. LMFI achieves 0.9548, 0.9639, 
0.9673, 0.9943, 0.9929 for overall phenotypes, 
respectively. 

Figure 2: The comparisons of different methods. The 
performance of LMFI, Xgboost, Adboost, LR/Logit-
lasso on continuous phenotypes (a) and category 
phenotypes (b). 

 

1-NRMSE(Normalized Root Mean Square Error) is used 
to evaluate the continous phenotypes and AUC is used to 
evaluate the category phenotypes. LMFI shows the best 
perfomance among these methods. 

which performs much better than linear models with lasso 
in both continuous and category phenotypes. 
Furthermore, LMFI also shows better than non-linear 
models, such as Adaboost achieves 0.9185, 0.9151, 0.8936, 
0.9844, 0.9791 and Xgboost achieves 0.9291, 0.9395, 
0.9180, 0.9633, 0.9702. 

The secure inference protocol is robust 

To demonstrate the robust of the secure inference 
protocol, we applied it to a random sampling with 300 test 
samples for 100 times, and evaluated the performance by 
mean and standard deviation. The secure protocol could 
obtain 0.9577±0.0033 (mean and standard deviation), 
0.9686±0.0025, 0.9711±0.0030, 0.9921±0.0029, 
0.9920±0.0034 for 5 phenotypes, which indicating that the 
secure protocol is robust in different experiments.  

Figure 3: The performance of the secure inference 
protocol. 
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 a. The accuracy of the secure inference protocol in100 
times of random sampling. 

Furthermore, the average of the secure protocol achieves 
0.9725 in a blind test with 198 samples. 

The secure inference protocol is efficient 

To demonstrate the efficient performance of the secure 
protocol, we test the performance with different sample 

size. Here we choose 𝑁 = 8192, the coeff modulus is the 
multiplication of three primes with bit size 60, 60, 60 
respectively by obeying the homomorphic encryption 
white paper Albrecht et al. (2021). For 198 × 20390 test 
data samples, which are regarded as 5 submatrix (with first 
four 198 × 4096 matrices and last 198 × 4006 matrix), we 
extend the five matrices to be 256 × 4096 matrices with 
zero padding. By assembling the adjacent rows of each 
submatrix into 128 × 4096 complex submatrix, we encode 

the complex submatrices to obtain 5 × 128 elements in 𝑅𝑁 
. In the process of homomorphic linear evaluation, 5 × 128 
homomorphic multiplications and 16 + 8 + 5 
homomorphic rotations are needed. 

The protocol only takes 4.32s for 198 samples.  

Figure 3: The performance of the secure inference 
protocol. 

 

b. The running time of the secure inference protocol. 

With the sample size arise, it does not change much (4.63s 
for 250 samples). Even with 500 samples, it takes 8.67s to 
obtain the final predications. All the computation are 
compiled by AMD EPYC 7K64@2.6GHz, running with 4 
processes and the memory is 8GB. 

DISCUSSION AND CONCLUSION 

Construct an accurate, secure and efficient phenotype 
prediction model is essential for privacy and security 
computation. We have developed a secure inference 
protocol with encrypted linear models and it achieves good  

performance in the inference of phenotype and shows 
robust in 100 times of random sampling. Besides, it is very 
efficient and only takes seconds to predict the hundreds of 
samples. However, the protocol also needs to be further 
developed. Firstly, the protocol has not been test on more 
datasets. Secondly, the protocol should be further 
improved in homomorphic encrypted computation.  

Thirdly, the linear models could be extended to non-linear 
models to achieve better accuracy and the homomorphic 
encrypted computation methods should be corresponded 
to be transformed. In conclusion, we have developed an 
accurate, secure and efficient phenotype prediction 
protocol and it takes only seconds to predict hundreds of 
samples. 

ABBREVIATIONS 

iDASH: integrating Data for Analysis, anonymization, and 
SHaring.  

LMFI: Linear Model with Feature Importance. 

NRMSE: Normalized Root Mean Square Error. 

AUC: Area Under Curve. 

HE: Homomorphic Encryption. 

RLWE: Ring Learning with Errors. 

BSGS: Baby-Step-Giant-Step. 

CKKS: Cheon-Kim-Kim-Song. 

DECLARATIONS 

Supplementary information 

Not appliable. 

Ethics approval and consent to participate 

Not applicable. 

Consent for publication 

Not applicable. 

Availability of data and materials 

The datasets are available in the 
http://www.humangenomeprivacy.org/2022/ providing 
by the iDASH-2022 track2. 

Competing interests 

The authors declare that there is no conflict of interest. 

Funding 

The authors are supported by the Natural Science 
Foundation of China (NSFC) under Grants Nos. 
11422108. 

779 



 

 
 

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 4 

ORIGINAL ARTICLE 

Human Biology (Jul-Aug)2024, Vol 94, Issue 4, pp:774-780 Copyright ©2024, Human Biology, visit humbiol.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Acknowledgements 

The authors acknowledge the grant NIH/NHGRI 
R13HG009072 that supported iDASH-2022 and co-
organizer's efforts to prepare data/challenge. 

Authors’ contributions 

G.Z. and M.Z. developed the inference model. F.Z. 
implemented the encryption of the model. M.Z., G.Z., F.Z 
and G.L. wrote the paper. All authors reviewed the 
manuscript. 

REFERENCES 

1.Benfer PN, Mitchell-Olds T. 2008. From genotype to 
phenotype: systems biology meets natural variation. 
Science. 320(5875):495-7. 

2.Dowell RD, Ryan O, Jansen A, et al. 2010. Genotype to 
phenotype: a complex problem. Science. 328(5977):469. 

3.Lehner B. 2013. Genotype to phenotype: lessons from 
model organisms for human genetics. Nature Reviews 
Genetics. Nat Rev Gene. 14(3):168-78. 

4.Burton PR. 2007. Genome-wide association study of 
14,000 cases of seven common diseases and 3,000 shared 
controls. Nature. 447(7145): p. 661-78. 

5.Purcell S, Neale B, Todd-Brown K, et al. 2007. PLINK: 
a tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet. 81(3):559-75. 

6.Marchini J, Howie B, Myers S, et al. 2007. A new 
multipoint method for genome-wide association studies 
by imputation of genotypes. Nat Genet. 39(7):906-13. 

7.Rakitsch B, Lippert C, Stegle O, et al. 2012. A Lasso 
multi-marker mixed model for association mapping with 
population structure correction. Bioinformatics. 
29(2):206-14. 

8.Waldmann P, Mészáros G, Gredler B, et al. 2013. 
Evaluation of the lasso and the elastic net in genome-wide 
association studies. Front Genet. 4:270. 

9.Ogutu JO, Schulz-Streeck T, Piepho HP. 2012. 
Genomic selection using regularized linear regression 
models: ridge regression, lasso, elastic net and their 
extensions. BMC Proc. 6(2): p. S10. 

10.Banerjee R, Marathi B, Singh M. 2020. Efficient 
genomic selection using ensemble learning and ensemble 
feature reduction. Journal of Crop Science and 
Biotechnology. 23(4): p. 311-323. 

11.Fan J, Vercauteren F. 2012. somewhat practical fully 
homomorphic encryption. Cryptology ePrint Archive. 

12.Brakerski Z, Gentry C, Vaikuntanathan V. 2014. 
(Leveled) fully homomorphic encryption without 
bootstrapping. ACM Transactions on Computation 
Theory (TOCT). 6(3): p. 1-36. 

13.Cheon JH. 2017. Homomorphic encryption for 
arithmetic of approximate numbers. in Advances in 
Cryptology–ASIACRYPT 2017: 23rd International 
Conference on the Theory and Applications of 
Cryptology and Information Security, Hong Kong, China, 
December 3-7, 2017, Proceedings, Part I 23. Springer. 

14.Ducas L, Micciancio D. 2015. FHEW: bootstrapping 
homomorphic encryption in less than a second. in 
Advances in Cryptology--EUROCRYPT 2015: 34th 
Annual International Conference on the Theory and 
Applications of Cryptographic Techniques, Sofia, 
Bulgaria, April 26-30, 2015, Proceedings, Part I 34. 
Springer. 

15.Chillotti I. 2020. TFHE: fast fully homomorphic 
encryption over the torus. Journal of Cryptology. 33(1): p. 
34-91. 

16.Halevi S, Shoup V. 2014. Algorithms in helib. in 
Advances in Cryptology– CRYPTO 2014: 34th Annual 
Cryptology Conference, Santa Barbara, CA, USA, August 
17-21, 2014, Proceedings, Part I 34. Springer. 

17.Juvekar C, Vaikuntanathan V, Chandrakasan A. 2018. 
{GAZELLE}: A low latency framework for secure neural 
network inference in 27th {USENIX} Security 
Symposium ({USENIX} Security 18).  

18.Lu WJ. 2021. PEGASUS: bridging polynomial and 
non-polynomial evaluations in homomorphic encryption 
in 2021 IEEE Symposium on Security and Privacy (SP). 
IEEE. 

19.Cheon JH. 2019. Faster Linear Transformations in 
$\textsf {HElib} $, Revisited. IEEE Access. 7: p. 50595-
50604. 

20.Albrecht M. 2021. Homomorphic encryption standard. 
Protecting privacy through homomorphic encryption. p. 
31-62. 

780 


