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Bulk and Single-Cell Transcriptional Profiles Reveal Roles of Fibroblasts 

and Immunocytes in Pan-Cancer Progression 

                                                  Yan Sun 1, 2, 3, Bin Song 1, 2, Qichao Yu 1, 2, Huanming Yang 1, 2, 3, Wei Dong 3, 1, 2, * 

ABSTRACT 

Tumors carry various dysregulated genes, of which many are found to be related to the overall survival of patients. These 
dysregulated genes are usually identified by bulk transcriptional comparison between tumors and their matching non-
tumor tissues. However, because tumor tissues usually contain stromal cells in addition to cancer cells, it remains unclear 
whether the stromal cells within tumors also carry dysregulated genes. Here, to address this question, we combine bulk 
and single-cell gene expression data of tumor, adjacent and non-tumor tissues from 7 organs to explore the molecular 
and cellular mechanism of cancer progression. We found that fibroblasts within tumors across 7 cancer types commonly 
carry multiple dysregulated genes related to the overall survival of patients. Cell-cell communication analysis revealed 
significant interactions between cytotoxic immune cells and cancer fibroblasts through the PARs pathway, and self-
activation of cancer associated fibroblasts (CAFs) via the PERIOSTIN pathway in pan-cancer. We also identified Colon 
cancer specific cycling B cells, which influence patients’ survival. Our study provides potential targets for pan-cancer 
therapy. 

INTRODUCTION 

Cancer is thought to be caused by mutated or dysregulated 
expression of oncogenes, tumor-suppressor genes or non-
coding genes (Basu, 2018; Croce, 2008). Dysregulated 
expression of some genes represent general features in 
different cancer types Hufton et al. (1999), Kettunen et al. 
(2004), Xu et al. (2000), Zaravinos et al. (2011), Delakas et 
al. (2011), and help researchers to understand tumor biology 
and predict patients’ survival (Rosario et al., 2018; Xue, Liu, 
Wan, & Zhu, 2020). The method to identify dysregulated or 
differentially expressed genes (DEGs) relies on comparison 
between non-tumor and tumor tissues, which is composed 
of multiple cell types including malignant cells, immune 
cells, stromal cells, and extra cellular matrix (ECM), by 
which cell-cell and cell-matrix communications are 
established (Dominiak, Chełstowska, Olejarz, & Nowicka, 
2020; Garner & Visser, 2020; Schwager, Taufalele, & 
Reinhart-King, 2019). The existence of multiple cell types 
(malignant cells and stromal cells such as fibroblasts or 
immune cells) within cancer tissues makes it hard to tell 
whether the DEGs found in tumors are from malignant 
cells. Additionally, the change of cell ratio within the tissue 
also influences bulk gene expression levels. Single-cell 
technology has accelerated cancer research for its power to 
decipher the cellular and molecular landscape of tumor 
tissues. 

A number of cancer single-cell atlases have been 
published to characterize the cellular heterogeneity 
Kumar et al. (2022), Wu et al. (2021), profile cancer 
immune microenvironments Binnewies et al. (2018), 
Leun et al. (2020), and unveil the mechanism of 
metastasis Lawson et al. (2018). However, current 
cancer single-cell studies focus on one cancer type or a 
limited number of patients, which ignores the diversity 
among cancers. Cancer is a heterogeneous disease 
Marusyk et al. (2010) with multiple subtypes based on 
the cell of origin, the expression of specific molecular 
markers, or the genetic aberrations Arora et al. (2019), 
Huvila et al. (2021), Kim et al. (2019), Marisa et al. 
(2013), Network et al. (2015), Parker et al. (2009), Prete 
et al. (2020), Rudin et al. (2019), Sia et al. (2017), 
Skibinski et al. (2015), West et al. (2012). Even tumors 
originate from the same organ and even if histologically 
they appear similar, their behavior and response to 
therapy can be different Cusnir et al. (2012). In a study 
on a cohort of 25 high-risk prostate tumors, researchers 
observed outlier transcripts in each tumor, which were 
associated with cell cycle, translational control or 
immune regulation Wyatt et al. (2014). Publicly available 
database such as The Cancer Genome Atlas (TCGA) 
program Network et al. (2013) has collected tens of 
thousands of bulk samples and adopts unified standards 
that ensure comparability between samples.  
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 A total of 33 cancer types are included in this program, and 
researchers are able to rule out signatures caused by cancer 
heterogeneity. 

Because no one single-cell study has covered so many 
cancer types and collecting so many samples with unified 
standards, if researchers want to gain a multidimensional 
understanding of the molecular signature of pan-cancer, it 
is necessary to combine bulk data covering plenty of 
heterogeneous patients and single-cell data that provide 
cellular-level insights. By integrating bulk and single-cell 
data, researchers have explored clonal architecture of 
tumors Malikic et al. (2019), and identified immune 
infiltration related genes in cholangiocarcinoma Chen et al. 
(2021). 

It is recently recognized that non-tumor tissue adjacent to 
the tumor is not a good control for tumor study, because 
genes in the adjacent tissues could be activated by stimuli 
such as growth factors, hormones, or stress produced by 
tumors Dvir Aran et al. (2017). And researchers imported 
samples from The Genotype-Tissue Expression (GTEx) 
program Lonsdale et al. (2013) as control, which are 
collected from tumor-free individuals. 

In this study, we collected TCGA bulk RNA samples of 7 
cancer types, which contain > 20 adjacent samples and 
have clear tissue origins of tumor, to identify dysregulated 
genes in pan-cancer. In addition, we collected non-tumor 
tissues from GTEx of corresponding organs as extra 
controls to exclude tumor adjacent tissue specifically 
expressed genes. We examined cell origin of commonly 
dysregulated genes in single-cell data, and explored cell-cell 
communications. We applied weighted correlation 
network analysis (WGCNA) Langfelder et al. (2008) on 
bulk data to investigate correlations between dysregulated 
genes and cell-cell communication pathways. By 
performing survival analysis, we linked gene expression 
levels to cancer progression, and investigated the 
underlying mechanism that leads to opposite prognostic 
effects of genes in different cancer types. 

MATERIALS AND METHODS 

Data collection  

We downloaded gene expression data of 3975 TCGA 
tumor samples, 408 TCGA adjacent samples and 1490 
GTEx non-tumor samples from 7 organs (Breast, Colon, 
Liver, Lung, Prostate, Thyroid and Uterus), which has 
been re-quantified using identical analysis pipeline to 
remove batch effects caused by software Dvir Aran et al. 
(2017), Rahman et al. (2015) (see Data availability). 

We collected 20 tumor single-cell samples of these 7 cancer 
types Dong et al. (2020), Luo et al. (2022), Luo et al. (2021), 
Ma et al. (2021), Pal et al. (2021), Zeng et al. (2022), 23 
non-tumor tissue single- cell samples of six corresponding 

 

organs (Breast, Colon, Liver, Lung, Prostate and Uterus) 
Garcia-Alonso et al. (2021), Gray et al. (2022), Henry et al. 
(2018), MacParland et al. (2018), Madissoon et al. (2023), 
Smillie et al. (2019), Vilella et al. (2021), Wang et al. (2020) 
from tumor-free individuals and three Prostate non-tumor 
single-cell samples from Prostate cancer patients (Tuong 
et al., 2021) (see Data availability). 

DEG analysis  

DEG analysis was applied referring to Dvir Aran et al. 
(2017). The gene count data was used and we retained 
genes with count >= 10 in at least 2 samples. In the 
analysis of TCGA tumor tissues-vs-GTEx non-tumor 
tissues, we first employed upper-quantile correlation and 
then the RUVg method from the RUVSeq package Risso 
et al. (2014) (Version 1.16.1) to remove batch effects. The 
RUVg method corrected expressions based on a list of 
housekeeping genes (PSMB2, PSMB4, C1orf43, RAB7A, 
REEP5, VCP, VPS29, C15orf24, CHMP2A, SNRPD3), 
which were suggested by Eli Eisenberg et al. (2013). We 
then used the edgeR package (Robinson, McCarthy, & 
Smyth, 2010) (Version 3.24.3) to find DEGs with log2-
fold change > 1 or < -1, log2-CPM > 3, FDR < 0.05.  

In the comparison of TCGA tumor tissues-vs-TCGA 
adjacent tissues, edgeR was performed directly. 

Gene functional enrichment  

We performed enrichment analysis using the 
clusterProfiler package Yu et al. (2012), He et al. (2012) 
(Version 4.6.2) and the org.Hs.eg.db database Carlson et 
al. (2019), Li et al. (2019) (Version 3.16.0). 

Protein-protein interaction analysis  

PPI analysis was performed on the online database 
STRING (https://string-db.org) Snel et al. (2000), 
Huynen et al. (2000). 

xCell  

Cell type scores in bulk samples were calculated by the 
xCellAnalysis function from the xCell R package Aran et 
al. (2017) (Version 1.1.0) with default parameters, and the 
count matrix was used. 

Single-cell clustering and visualization  

The Seurat package Hao et al. (2021), Satija et al. (2015), 
Regev et al.  (2015) (Version 4.3.0) was used to cluster and 
visualize single-cells, and to find marker genes for each 
cluster identified. In most of the single-cell datasets, 
quality control of cells has been finished (see Data 
availability). And we used the subset function to remove 
low-quality cells with number of expressed genes < 500 or 
> 3000, or percentage of mitochondrial reads > 20% in 
Breast cancer samples 
GSE161529_GSM4909283_TN_0106,  
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 GSE161529_GSM4909306_ER_0029_9C, Prostate 
samples GSE120716_D17, GSE120716_D27, 
GSE120716_Pd, and low-quality cells with number 
of expressed genes < 500 or > 5000, or percentage of 
mitochondrial reads > 20% in Breast cancer sample 
GSE161529_GSM4909289_HER2_0308.  

We log-normalized count data with scale.factor = 
1e4, and chose 2000 highly variable genes with 
selection.method = "vst". PCA was performed with 
the 2000 variable genes and we retained top 10 PCs 
with the highest standard deviations for following 
analyses. We identified clusters with resolution = 0.5, 
and used UMAP (McInnes, Healy, & Melville, 2018) 
to visualize single-cells. 

The FindAllMarkers function was used to find highly 
and specifically expressed genes of each identified 
cluster with parameters only.pos = TRUE, min.pct = 
0.25 and logfc.threshold = 0.25.  

We annotated cell types for clusters based on meta-
data downloaded from papers where these single-cell 
datasets were published (see Data availability), and 
based on marker genes provided by CancerSCEM 
(https://ngdc.cncb.ac.cn/cancerscem/documents) 
Zeng et al. (2022). 

Survival analysis 

Survival analysis was performed based on gene 
expressions or GSVA scores of gene sets using the 
survival package Therneau et al. (2015), Lumley et al. 
(2015) (Version 3.5.5). We first classified patients into two 
groups, one group lowly expressed, and the other group 
highly express the target gene/gene set. To choose the 
best expression cut-offs for grouping the patients most 
significantly, all log2-CPM/GSVA values from the 25th to 
75th percentiles were used to calculate a log-rank P value 
Nagy et al. (2021), Uhlen et al. (2017) with the survdiff 
function, and the percentile yielding the lowest P value was 
selected. Then we used the survfit function to perform 
survival analysis, which was visualized with the ggsurvplot 
function from the survminer package Kassambara et al. 
(2017), Fabian et al. (2017) (Version 0.4.9) with 
log.rank.weights = '1'.  

The x-axis is days after diagnosed, the y-axis is the 
percentage of patients alive. The colored area around the 
curve indicates the confidence interval. 

If there’s a higher observed event than expected event in 
the group of patients with high expression of a selected 
gene, it is recognized as an unfavorable prognostic gene; 
otherwise, it is a favorable prognostic gene. Uhlen et al. 
(2017) 

 

CellChat  

We used the CellChat package Jin et al. (2021) (Version 
1.6.1) to analyze cell communications in single-cell 
samples based on ligand-receptor interaction. We used 
log2-CPM as input. The analysis pipeline was the same as 
the tutorial ‘Full tutorial for CellChat analysis of a single 
dataset with detailed explanation of each function’ 
provided by the developers 
(https://github.com/sqjin/CellChat). 

WGCNA  

We applied the WGCNA package Langfelder et al. 
(2008), Horvath et al. (2008) (Version 1.69-81) to bulk 
gene expression data to detect gene co-expression 
modules. The count data was first normalized with the 
varianceStabilizingTransformation function from the 
DESeq2 package Love et al. (2014), Anders et al. (2014) 
(Version 1.22.2). Then we used a one-step network 
construction function blockwiseModules to detect 
modules with fixed parameters TOMType = "unsigned", 
minModuleSize = 5, reassignThreshold = 0, 
mergeCutHeight = 0.25. numericLabels = TRUE, 
pamRespectsDendro = FALSE, verbose = 3, 
maxBlockSize = 30000, and a data dependent parameter 
‘power’, which were 14, 14, 14, 14, 14, 22, 14 for Breast, 
Colon, Liver, Lung, Prostate, Thyroid, Uterus cancers, 
respectively. 

GSVA  

We used the GSVA package Hanzelmann et al. (2013), 
Guinney et al. (2013), Subramanian et al. (2005) (Version 
1.46.0) to evaluate the expression level of a gene set. 
Log2-CPMs were used as input. Then the gsva function 
was applied with the parameter kcdf="Gaussian", which 
returned the score. 

Statistical test 

Wilcoxon test was performed using the R command 
wilcox.test(), and the parameter alternative='greater' was 
set in the single-tailed test. Chi-squared test of pathway 
frequencies was performed using the R command 
chisq.test() with the parameter simulate.p.value = TRUE. 

Analysis environment 

Most of the analyses were performed in the R 
environment Team et al. (2013) (Version 4.2.0).   

RESULTS 

Dysregulated genes expressed by fibroblasts are 
common in pan-cancer 

We used bulk samples to find DEGs, gene co-expression 
networks and to perform survival analysis, 
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 which links gene expressions to cancer progressions. We 
used single-cell samples to investigate the contribution of 
each cell type to bulk gene expressions, to perform cell-
cell communication analysis and to identify cell types 
(Fig.1a; Table S1). 

Figure 1: Commonly up-regulated genes. 

 

 

a: Workflow of this study. Three tissue types (non-tumor 
tissues from tumor free individuals, adjacent and tumor 
tissues from tumor patients) from 7 organs (Breast, Colon, 
Liver, Lung, Prostate, Thyroid, Uterus) are included. We 
collect both bulk and single-cell gene expression data, 
apply DEG analysis, co-expression network analysis 
(WGCNA), survival analysis on bulk data, and apply cell 
expression analysis, cell communication analysis 
(CellChat), cell type identification on single-cell data. b: 
PPI networks of commonly up-regulated genes. Seven 
clusters are identified by MCL clustering with inflation 
parameter = 2.5. Line thickness indicates the strength of 
data support. Nodes within a cluster are connected with 
solid lines, from different clusters with dashed lines. 
Disconnected proteins are hided. c: Expression levels of 
Cluster2 genes in six cancer single-cell samples: 
GSE161529_GSM4909306_ER_0029_9C (Breast 
cancer), CancerSCEM_CRC_016_08_1A (Colon cancer), 
GSE151530_H38 (Liver cancer), CancerSCEM_LUAD-
003-11-1A (Lung cancer), GSE137829_P5 (Prostate 
cancer), ATC-WYF (Thyroid cancer). No fibroblast was 
identified in Uterus cancer samples. Fibroblasts are 
colored at the bottom. d: GO enrichment of Cluster1, 2. 
They are involved in cell cycle and ECM, respectively. e: 
Survival analysis by expressions of POSTN in TCGA 
cancer patients (see Methods). Prognostic effects are 
unfavorable in all the 7 cancer types. 

Firstly, to investigate whether different cancer types share 
any feature on gene expression level, we performed 
differentially expressed gene (DEG) analysis Robinson et 
al. (2010) on tumor tissues from all the 7 organs against 
their corresponding adjacent and GTEx Lonsdale et al. 
(2013) tissues. To avoid identification of adjacent 
specifically activated genes immediate-early responding to 
stimuli such as growth factors, hormones, or stress 
produced by tumors Dvir Aran et al. (2017), we required 
DEGs to be up- or down- regulated in both tumor-vs-
adjacent and tumor-vs-GTEx comparisons (log2-fold 
change > 1 or < -1, log2-CPM (count per million) > 3, 
FDR (false discovery rate) < 0.05). We identified 97 
commonly up-regulated genes and 32 commonly down-
regulated genes in >= 5 cancer types (which were just 
enough for functional enrichment, table S2. 

According to protein-protein interaction (PPI) database 
Szklarczyk et al. (2019), GO enrichment Yu et al. (2012) 
and gene expressions in single-cell data, we found the 
majority (51 genes identified as Cluster1 by PPI, Fig.1b) 
of the commonly up-regulated genes regulated cell cycle 
(Fig. 1d) and were expressed by malignant cells (table S2). 
Besides, malignant cells also highly expressed MMP7 
which is a member of matrix metalloproteinases (MMPs) 
and is involved in breakdown of ECM (Fig. 1c, table S2) 
Yokoyama et al. (2008), suggesting the ability of malignant 
cells to regulate extra cellular matrix directly. 
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 The second largest group of the commonly up-regulated 
genes (15 genes identified as Cluster2 by PPI, including 
ECM associated genes COL10A1, COL1A1, COL1A2, 
COMP, CTHRC1, MFAP2, MMP11, POSTN, Fig.1b) 
are primarily expressed by fibroblasts (Fig.1c, table S2). 
Periostin encoded by POSTN is a ligand for 
ITGAV+ITGB3 and ITGAV+ITGB5 to support 
adhesion and migration of epithelial cells Gillan et al. 
(2002). Evidence shows POSTN can activate the TGF-β, 
PI3K/Akt, Wnt, RhoA/ROCK, NF-κB, MAPK and 
JAK pathways Wang et al. (2022), and play multiple 
functions in tumor development and progression, 
including activating invasion and metastasis, 
angiogenesis, resisting cell death, and avoiding immune 
destruction González-González et al. (2018), Alonso et 
al. (2018). Using survival analysis Therneau et al. (2015), 
Cynthia et al. (2015), we found the overexpression of 
POSTN produced unfavorable prognostic effects in all 
the 7 cancer types (though not significant in Breast and 
Thyroid cancers, Fig. 1e), suggesting the possibility of 
POSTN as a broad target for cancer therapy. 

The commonly down-regulated genes were also primarily 
expressed by fibroblasts (table S2). The majority of them 
are involved in muscle activity and organization of ECM 
(Cluster1 and Cluster2, Fig. S1a, b), such as myosin genes 
MYH11 and MYL9 (Cluster1). Myosin is a structural 
component of muscle, while is recently recognized as a 
fundamental component during tumor genesis and 
progression Li et al. (2016), Yang et al. (2016), Ouderkirk 
et al. (2014), Krendel et al. (2014). Decreased expression 
levels of MYH11 in lung cancer patients were found to 
correlate with poor prognosis Nie et al. (2020). And 
MYL9 was reported to be low expressed in breast cancer, 
non-small cell lung cancer, and stomach adenocarcinoma, 
and to associate with immune infiltration and focal 
adhesion in these cancers Lv et al. (2022), Chen et al. 
(2022), Tan et al. (2014), Chen et al. (2014). This finding 
demonstrates fibroblasts are one of the origins of the 
dysregulation of muscle related components in cancers. 
We also found the down-regulated gene DCN (Cluster2) 
which is regarded as a tumor suppressor gene (Hu et al. 
(2021), Järvinen et al. (2015), Prince et al. (2015) 
expressed by fibroblasts (Table S2). Our results indicate 
fibroblasts play a fundamental role in the progression of 
multiple cancers. 

DEGs found in tumors indicate cellular disorders or 
changes in cell ratios. To rule out tumor DEGs that were 
caused by the change in cell composition, we performed 
deconvolution that estimate levels of different cell types 
in bulk samples by calculating cell type scores in tumor, 
adjacent, non-tumor bulk samples by xCell  Aran et al. 
(2017), which is an enrichment-based method 
incorporating marker gene signatures from multiple 
cancer types for pan-cancer deconvolution Tran et al. 
(2023). We found significantly higher epithelial scores and  

 

lower fibroblast scores in tumor tissues from most organs 
as compared no matter with adjacent or with non-tumor 
tissues (Fig. S1c). These results confirm the cancer 
commonly up-regulated genes expressed by fibroblasts 
are not caused by cellular disorders, while the other 
common DEGs might be a result of change in cell 
composition.  

Activations of Cytotoxic immune cells produce 
effects on Fibroblasts which are correlated with 
dysregulated genes and unfavorable prognosis 

Metastasis is the main cause of mortality in cancer 
patients Choi et al. (2018), Moon et al.  (2018). While 
ECM is essential for tumor cell invasion and migration 

Brassart-Pasco et al. (2020), Stetler‐Stevenson et al. 
(1993). The major source for ECM is fibroblasts no 
matter in normal or in cancer tissues Cusnir et al. (2012), 
Cavalcante et al. (2012), Xiong et al. (2016), Xu et al.  
(2016). We have demonstrated dysregulations of ECM 
components expressed by fibroblasts are common in 
different cancers. We wonder whether these alterations 
within fibroblasts are spontaneous or induced by other 
cells. Ligand-receptor interactions have been used to infer 
intercellular communication Armingol et al. (2021), Lewis 
et al.  (2021). And here we applied R package CellChat Jin 
et al. (2021) on 16 tumor and 14 non-tumor single-cell 
samples in which fibroblasts were identified to explore 
ligand-receptor interactions. We identified 3-63 
significant (P < 0.05) pathways in each single-cell sample 
(86 pathways in total) (table S3). And receptors of 26 
pathways were primarily expressed by fibroblasts in at 
least 10% single-cell samples (table S3, Fig. 2a). These 26 
pathways might associate with dysregulation of cancer 
fibroblasts. Additionally, four pathways (NOTCH, 
VCAM, PARs, PERIOSTIN) had > 40% higher detect 
rates (p < 0.05), four pathways (CLDN, CD46, PROS, 
PDGF) had 30%-40% higher detect rates (p < 0.15) in 
tumor samples as compared with non-tumor samples 
(table S3, Fig. 2a). 

To evaluate which pathways were the most possible to 
correlate with commonly up-regulated genes in cancer 
fibroblasts, and considering the low quantity of single-cell 
samples Cusnir et al. (2012), Cavalcante et al. (2012), 
Marusyk  et al. (2010), Polyak et al. (2010) and the 
dropouts in single-cell data Kharchenko et al. (2014), 
Scadden et al. (2014), Peng et al. (2020), we applied R 
package WGCNA (Weighted Correlation Network 
Analysis) Langfelder et al.(2008), Horvath et al. (2008) on 
3795 TCGA bulk tumor samples. This software predicts 
gene modules based on gene co-expressions which have 
been frequently used to infer gene functions Tan et al. 
(2019), Wolfe et al. (2005), Butte et al. (2005). We 
identified 73, 66, 53, 86, 43, 26, 42 gene modules in 
Breast, Colon, Liver, Lung, Prostate, Thyroid, Uterus 
cancer bulk samples, respectively (for each cancer type,  
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 modules were named as Module1, Module2, etc., in 
descending order of number of genes, table S4). 

Except for in Uterus cancers, we found modules in all the 
other six cancer types (Breast cancer Module4, Colon 
cancer Module2, Liver cancer Module4, Lung cancer 
Module7, Prostate cancer Module13, Thyroid cancer 
Module8, table S4) including commonly up-regulated 
Cluster2 genes (primarily COL10A1, COL1A1, COL1A2, 
COMP, POSTN, table S4). And we found in addition to 
POSTN previously analyzed (Fig. 1e), high expressions of 
COL10A1, COL1A1, COMP also produced unfavorable 
prognostic effects in most of the 7 cancer types (Fig. S2a), 
which have been reported by other studies Kahlert et al. 
(2022), Liu et al. (2018), Ma et al. (2022), Zhang et al. 
(2020), Wu et al. (2020), Zhang et al. (2018), Yang et al. 
(2018).  

In the six WGCNA modules, we noticed ligands/receptors 
from the aforementioned 26 pathways. And the most 
frequent ones (in at least four of the six modules) were 
POSTN (PERIOSTIN ligand, it is itself the commonly up-
regulated DEG), F2R (PARs receptor), PDGFRA (PDGF 
receptor), PDGFRB (PDGF receptor) which belong to the 
top 8 differentially identified pathways (Fig.2a) and FGF7 
(FGF ligand), CDH11 (ANGPTL receptor) (table S4). It is 
recognized that PDGF signaling promotes both the 
proliferation and differentiation of fibroblasts into cancer-
associated fibroblasts (CAFs) Kalluri et al. (2016), Ren et 
al. (2021). Zhang et al. (2022), which express high levels of 
ECM proteins such as collagens and fibronectin 
Frangogiannis et al. (2020) and contribute to the growth, 
expansion and dissemination of malignant cells 
Aboussekhra et al. (2011). The identification of co-
expression of PDGF receptors and up-regulated ECM 
genes in cancer fibroblasts is consistent with these studies 
and confirms the reliability of our analysis. 

We found the PARs signaling were triggered by NK, T, 
Mast or Malignant cells in cancer single cell samples 
(Fig.2b). Protease-activated receptors (PARs) are a 
subfamily of related G protein-coupled receptors activated 
by cleavage of part of their extracellular domain Macfarlane 
et al. (2001), Plevin et al. (2001), and have been found to 
function in cell polarization Goldstein et al. (2007), Macara 
et al. (2007), inflammatory Heuberger et al. (2019) & 
Schuepbach et al. (2019). We noticed the main PARs 
ligands in cancers were GZMA expressed by NK (nature 
killer) or T cells (which highly express CD3D, CD3G, 
CD3E and KLRB1, KLRD1, NKG7, suggesting their 
cytotoxicity) and CTSG primarily expressed by mast cells 
(Fig.2c, table S3). GzmA encoded by GZMA is a tryptase 
isolated from cytotoxic T lymphocyte (CTL) granules and 
cleaves proteins best after arginine Daniéle et al. (1986)& 
Jürg et alo. (1986). In CTL-targeted cells, GzmA activates 
caspase-independent programmed cell death pathways 
Martinvalet et al. (2008), Lieberman et al. (2008), 
Martinvalet et al. (2009), Lieberman et al. (2009), Zhu et al. 
(2009). 

 

 

In colorectal cancer, GZMA has been found to promote 
cancer development by enhancing gut inflammation 
Santiago et al. (2020). Cathepsin G encoded by CTSG is 
a member of the serine proteases family, which was first 
found in azurophilic granules of neutrophil granulocytes 
Starkey et al. (1976) , Barrett et al. (1976), then found in 
other myeloid cells including B cells, monocytes, 
dendritic cells Burster et al. (2018), Mellins et al. (2010), 
Gao et al. (2018) , Luo et al. (2018) and mast cells 
Caughey et al. (2007). In tumors, inhibition of cathepsin 
G was found to reduce tumor vascularity Gao et al.  
(2018), Wilson et al. (2010), Singh et al. (2010). These 
findings indicate cytotoxic immune cells (NK or T cells) 
and mast cells in cancers produce effect on fibroblasts 
through PARs pathway, and this effect is probably 
specifically activated in tumor microenvironment 
(Fig.2a), for there are low levels of immune cells in 
healthy tissues. 

There are four members in PARs receptor family: PAR1 
encoded by F2R, PAR2 by F2RL1, PAR3 by F2RL2 and 
PAR4 by F2RL3 Heuberger et al. (2019), Schuepbach et 
al. (2019). We found the primary PARs receptor 
expressed by cancer fibroblasts was F2R (Fig. 2c), which 
was in WGCNA modules of commonly up-regulated 
ECMs (COL10A1, COL1A1, COL1A2, COMP, 
POSTN) in four cancer types (Breast, Colon, Liver, and 
Prostate cancers, table S4). And although F2R were not 
in modules of these ECMs in the other three cancer 
types (Lung, Thyroid, Uterus cancers), the positive 
correlations between F2R and these ECMs were 
significant (Fig. 2d). Additionally, in single-cell samples, 
fibroblast clusters which express F2R and which express 
these ECMs were the same (Fig. 2c). These findings at 
bulk and single-cell levels prove the correlation between 
the F2R and commonly up-regulated ECM proteins, 
which suggest a potential mechanism to regulate 
fibroblasts through PARs in cancers.  

We also examined correlations between F2R and 
COL10A1, COL1A1, COL1A2, COMP, POSTN in 
GTEx non-tumor and TCGA adjacent samples. We 
detected low correlations in non-tumor samples but 
moderate correlations in adjacent samples (Fig. S2b). We 
speculate this phenomenon might be caused by 
infiltration of immune cells in adjacent tissues which 
provided PARs ligands (GzmA or Cathepsin G). And we 
did observe a higher expression level of GZMA in 
adjacent tissues as compared with non-tumor tissues 
(Fig. S2c). This result indicates the gene networks in 
adjacent tissues are different from normal tissues and 
cannot be considered healthy.  

POSTN is commonly up-regulated DEG (Fig.1c) and 
the only ligand of the PERIOSTIN pathway (Gillan et 
al., 2002), whose receptors are ITGAV+ITGB3 and 
ITGAV+ITGB5. Researchers have found the activation 
of ITGAV+ITGB5 on fibroblasts helps them to acquire  
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 a myofibroblast phenotype (highly expressing alpha-
smooth muscle actin encoded by ACTA2) Franco-
Barraza et al. (2017), which in cancers is recognized as 
activated fibroblast and a major source of the CAFs 
Schmitt-Gräff et al. (1994), Gabbiani et al. (1994), Shiga 
et al. (2015), Xing et al. (2010), Watabe et al. (2010). We 
validated fibroblasts in cancers to express ligand POSTN 
and receptor ITGAV+ITGB5, simultaneously (table S3), 
and the PERIOSTIN pathway was more frequently 
activated in tumors (Fig. 2a).  

Figure 2: Pathways identified in single-cell samples and 
PARs pathway in tumors. 

 

 

a: Identification rates of pathways in tumor and non-
tumor single-cell samples. The x-axis is pathways in 
descending order of rate difference between tumor and 
non-tumor samples. Chi-squared tests were performed on 
pathway frequencies between tumor and non-tumor 
samples, and p values were markerd on each pair of 
histograms. b: PARs signaling detected in five tumor 
single-cell samples by CellChat. GMP: granulocyte-
monocyte progenitor. c: Upper-panel, relative 
contributions of ligand-receptor pairs to PARs signaling 
in corresponding samples. Lower-panel, expressions of 
PARs ligands and receptors and five correlated commonly 
up regulated genes in corresponding samples. d: Gene 
expression correlations of PARs receptor F2R and 
commonly up regulated genes in TCGA bulk tumor 
samples from 7 cancer types. Numbers in each cell are 
correlations, * labeled under the numbers are significance. 

These findings indicate a self-activation mechanism of 
CAFs through the PERIOSTIN pathway in tumors. 
Previous study found activation of PAR1 (F2R) and 
PAR2 (F2RL1) promoted alpha-smooth muscle actin 
(ACTA2) expression in human lung fibroblasts 
Asokananthan et al. (2015). And in cancers, fibroblasts 
highly expressing ACTA2 are considered CAFs. Our 
findings suggest a possible underlying mechanism through 
PARs to PERIOSTIN which activate CAFs in cancers. 
And we propose that NK/T or mast cells which provide 
PARs ligands are the source of this signaling. 

Immune activation is correlated with favorable 
prognosis in pan-cancer 

Gene expression levels has been used to predict cancer 
patients’ clinical outcomes Vijver et al. (2002). These 
genes are called prognostic genes which are potential 
therapy targets Mao et al. (2021) and may associate with 
cancer progression Tzanakis et al. (2006). In cells, 
prognostic genes may interact with other genes to form 
complex networks including interaction networks, 
regulatory networks, co-expression networks, signaling 
networks and metabolic networks. Among these 
networks, gene co-expression network has been used to 
investigate properties of prognostic genes in cancers for 
the following advantages: high coverage of the genome, 
little bias, and the ability to construct cancer-specific 
networks Yang et al. (2014). 

Herein, to find out gene modules that predict patients’ 
survival in pan-cancer, we summarized gene modules 
constructed by WGCNA and found 58 common 
modules, genes from which were co-expressed in all of the 
7 cancer types. We named them as S01-58 in decreasing 
order of number of genes and categorize them into 13 
classes according to functional enrichment and PPI 
networks (table S5). We applied the GSVA algorithm 
Hanzelmann et al. (2013), Subramanian et al. (2005) to 
evaluate expression levels of these gene sets in cancer 
tissues. 
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 This algorithm ranks genes in order of expression level in 
each sample and then gives scores of gene sets based on 
the cumulative density function (CDF). Then we applied 
survival analysis on GSVA scores and found high 
expressions of immune activation related sets (‘T cell 
activation’ gene sets S01, S08, ‘B cell activation’ gene sets 
S09, S14, ‘antigen processing MHCI’ gene set S18 and 
‘lymphocyte differentiation’ gene set S45) were associated 
with favorable prognosis in all the 7 cancer types (Fig. S3). 
This finding suggests the immune activity is a broad 
indicator for pan-cancer survival. And the co-expressions 
of these genes in all the 7 cancer types indicate immune 
activation mechanisms in different cancers are similar. 

Among the 58 commonly co-expressed gene sets, we 
found 28 sets were not enriched on known functions. And 
genes from these sets were primarily expressed by 
malignant cells (table S5). This finding indicates unique 
gene networks in tumor cells, which do not perform 
known biology functions. 

Cycling B cells are Colon specific and associate with 
cancer prognosis 

Cancer tissue is occupied by malignant cells that proliferate 
out of control. And we found strong signals of cell division 
related gene sets (‘cell division’ gene sets S04, S10, S37 and 
‘mitotic nuclear division and protein polymerization’ gene 
set S58) in cancer tissues (table S5, Fig. S4a). We noticed 
high expression levels of these gene sets were unfavorable 
to prognosis in Breast, Liver, Lung, Prostate, Thyroid, 
Uterus cancers but favorable to prognosis in Colon cancers 
(Fig. S4b). We checked 4 typical genes (CEP55, 
RACGAP1, CDCA2, UBE2C, according to gene functions 
and their positions in PPI networks, Fig. S4c) of these gene 
sets, and found similar prognostic properties (Fig. S4d). 
This phenomenon was also observed by other studies 
Uhlen et al. (2017). We speculated these genes might be 
expressed by different cell types in Colon cancers, and 
examined their expressions in single-cell samples. We 
found these genes were highly expressed by malignant 
cells, myeloid cells, fibroblasts or T cells in samples of 
other cancer types, but were expressed by B cells only in 
Colon cancers (Fig. 3a). In three Colon non-tumor single-
cell samples, we noticed clusters annotated as cycling B 
cells Smillie et al. (2019) expressing these genes, as well. 
And we wondered whether the aforementioned B cells in 
Colon cancers were cycling B cells in these non-tumor 
single-cell samples. We summarized marker genes of 
Colon cancer B cell clusters and Colon non-tumor cycling 
B cell clusters identified by Seurat Hao et al. (2021), Satija 
et al. (2015) (expressed in at least 25% cells, log2-fold 
change > 1, adjusted P-value < 0.05) in two tumor and 
three non-tumor high-quality single-cell samples. We 
identified 182, 132 marker genes in two cancer samples, 
respectively; 93, 364, 181 marker genes in three non-tumor 
samples, respectively. We found 36 marker genes shared by 

 

all the five samples (table S6). PPI networks and GO 
enrichment revealed two main functional groups in the 
36 markers which control deoxyribonucleoside 
biosynthesis (10 genes identified as Cluster1 by PPI, these 
genes are expressed by proliferating cells, Fig. 3b, c) and 
B cell differentiation (six genes identified as Cluster2, Fig. 
3b, c), suggesting these cells were cycling B cells. 

Figure 3: Cycling B cells in Colon tissues and cancers. 
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 a: Expressions of CEP55, RACGAP1, CDCA2, UBE2C in 
cancer single-cell samples. b: PPI networks of the 36 
cycling B cell markers, 7 clusters are identified by MCL 
clustering with inflation parameter = 2.5. Line thickness 
indicates the strength of data support. c: GO enrichment 
of Cluster1-4 identified by PPI d: GSVA scores of the 36 
cycling B cell markers in GTEx non-tumor, TCGA 
adjacent and TCGA tumor samples. Scores in Colon 
tissues are significantly higher than samples from the other 
organs (except for Lung non-tumor samples). 

 P-values are calculated by one-tailed Wilcoxon test (null 
hypothesis: colon ≤ other organs). e: Visualizations of cells 
which simultaneously express above average levels of the 
36 cycling B cell markers in colon tumor 
(CancerSCEM_CRC_016_15_1A, upper panel) and non-
tumor (SCP259_N51, lower panel) single-cell samples (on 
the left). They belong to clusters C6: B cells and C13: 
Cycling B/T & Germinal center, respectively (on the 
right). f: Survival analysis on GSVA scores of the 36 
cycling B cell markers in 7 cancer types. 

 Higher scores are significantly associated with better 
prognosis in Colon cancers. 

To further verify whether these cycling B cells are Colon 
specific, we used GSVA to calculate scores of the 36 
marker genes in tumor, adjacent and non-tumor bulk 
samples, and found significant higher levels in Colon 
tissues than tissues from other organs (one-tailed 
Wilcoxon test, p < 0.0001), except for Lung non-tumor 
tissues which expressed higher levels than Colon non-
tumor tissues (Fig. 3d). We speculated the high GSVA 
scores observed in Lung non-tumor tissues might be 
contributed by two or more cell types rather than cycling 
B cells, and in order to verify this conjecture, we sought 
for cells simultaneously expressing the 36 marker genes at 
above average levels in single-cell samples from different 
organs and tissues. We identified 23 and 8 cells in the two 
Colon cancer samples, respectively; 4, 9 and 13 cells in the 
three Colon non-tumor samples, respectively. We found 
these cells were all B cells previously annotated.  

We identified just one cell in a Lung cancer sample (which 
might be doublet that is an artifactual library generated 
from two cells), and none in the rest of the single-cell 
samples (Fig. 3e). This finding suggests these cycling B 
cells are Colon specific. 

We performed survival analysis using GSVA scores of the 
36 cycling B cell markers and found higher expression 
levels of these genes provide significantly better prognosis 
in Colon cancers but not in the other cancer types (Fig. 3f), 
which were similar to the cell cycle related genes (Fig. S4b, 
d). These findings indicate cycling B cells might be 
important to Colon cancer progression and survival 
though their amount is limited (Fig. 3e). 

 

 

DISCUSSION 

Cancer heterogeneity limits the efficiency of cancer 
studies with small sample sizes. While conducting in-
depth and detailed studies with large sample sizes is 
expensive. Our findings demonstrate systematic 
combination of publicly available bulk and single-cell 
“big data” resources an effective approach to dissect the 
cancer microenvironment. The data shows that 
fibroblasts were dysregulated in most cancer types and 
associated with immune cells.  

Despite considerable advances in the development of 
targeted therapies, no significant improvements have 
been made in the overall survival of patients with 
malignant tumors. One factor is that these therapies 
primarily target the fast-growing tumor but largely ignore 
the tumor microenvironment. Groot et al. (2017), 
Amend et al. (2017), Liu et al. (2019), Zhang et al. (2019) 
Tumor microenvironment includes ECM and the 
surrounding stromal cells such as immune cells and 
fibroblasts. CAFs are a major component of the cancer 
stroma Cirri et al. (2011), Chiarugi et al. (2011), Shiga et 
al. (2015), and secret the majority of ECM Kendall et al. 
(2014) which contribute to the growth, expansion and 
dissemination of malignant cells Aboussekhra et al. 
(2011). Our findings demonstrate most of the 
dysregulated genes expressed by fibroblasts were ECM 
components, such as COL10A1, COL1A1, COL1A2, 
COMP and POSTN. In oesophageal adenocarcinomas, 
CAFs release Periostin (POSTN) and promote tumor 
cell growth through paracrine signaling. Underwood et 
al. (2015) We observed the over expression of POSTN 
in pan-cancer and found its high expressions were 
identically associated with unfavorable prognosis in pan-
cancer. We also propose POSTN may induce self-
activation of CAFs. Current cancer drugs are effective 
only in a subgroup of cancers because of the 
heterogeneity of different cancer types Brennan et al. 
(2010), Gallagher et al. (2010). And these commonly 
dysregulated genes provide basis for more broader 
therapeutic approach. 

CAFs can break down proteins in the ECM leading to 
disruption of the normal structure allowing cancer cells 
to escape from their primary region. MMP proteins are 
key to this process. Shiga et al. (2015) We observed many 
MMPs over expressed by fibroblasts in cancers except 
for MMP-7. This MMP has been reported to be 
expressed by malignant cells in Pancreas Crawford et al. 
(2000), Leach et al. (2002) and Gastro/Esophagus 
Adachi et al. (1998) cancers, and we observed its 
expressions by malignant cells in Breast, Colon, Lung, 
Prostate, Uterus cancers (Fig. 1c, table S2), which 
indicates direct regulations to ECM by malignant cells in 
pan-cancer. 
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 Significantly higher plasma MMP-7 levels and serum 
MMP-7 levels were detected in Pancreas cancers and 
Colon cancers, respectively Liao et al. (2021), Zhang et al. 
(2021), which suggest the possibility to predict or diagnose 
cancers in non-invasive manners. 

We found pathways targeting fibroblasts in pan-cancer 
single-cell samples. Among these pathways, PARs, 
PERIOSTIN, PDGF were frequently activated in tumors 
and associated with dysregulated ECM genes which were 
correlated with worse survival (Fig. 1e, Fig. S2a). 
Especially, we validated the correlation between PARs 
pathway and these ECM DEGs at both bulk and single-
cell levels (Fig. 2c, d). And we first report the ligands of 
PARs are primarily provided by cytotoxic immune cells 
(NK or T cells) in most cancers (Fig. 2b, c). On the other 
hand, we observed the activation of immune related genes 
improved cancer patients’ survival (Fig. S3). These 
findings illustrate the multiple effects of the immune 
activity in cancers. Immunotherapy has been proved an 
effective strategy to cure cancers Riley et al. (2019), 
Mitchell et al.  (2019). One classic case of immunotherapy 
is checkpoint inhibitors targeting programmed cell death 
or cytotoxic lymphocyte associated proteins, while only a 
subset of patients responds to these inhibitors, and a 
substantial proportion of initial responders ultimately 
relapse with lethal, drug-resistant disease months or years 
later Syn et al. (2017), Soo et al. (2017). Our findings reveal 
factors that might lead to the failure of cytotoxic 
lymphocyte associated protein inhibitors. 

Pro-inflammatory immediate-early response genes have 
been found to be activated in tumor adjacent tissues Dvir 
Aran et al. (2017). Though the batch effect should be 
considered, we observed higher immune activity 
signatures in adjacent tissues (Fig. S2c), together with 
different gene co-expression networks (Fig. S2b). And 
gene co-expressions are not affected by batch effects, 
because the correlations were calculated within a single 
batch. These findings illustrate that adjacent tissues are 
influenced by tumors more or less. And this effect should 
be considered in cancer studies using adjacent tissues as 
control. 

Opposite prognostic effects of genes have been observed 
in different cancer types, but the underlying mechanism 
remains poorly understood Uhlen et al. (2017). By 
identifying cycling B cells in Colon cancers, we 
demonstrate gene prognostic effects are associated with 
specific cell types. And we provide 36 marker genes for 
Colon cancer cycling B cells. Germinal center (GC) is a 
transiently formed structure (persisting for weeks to 
months) in lymph nodes or the spleen. In GCs, B cells are 
activated, proliferate, differentiate, and mutate their 
antibody genes during normal immune response. Chronic 
GCs of longer duration are found in intestinal Peyer’s 
patches, with B cells in these sites undergoing antibody 
selection in response to persistent exposure to gut  

 

microbiota Chen et al. (2020), Nowosad et al. (2020), 
Young et al. (2021), Brink et al. (2021). The longer 
duration may make GC and cycling B cells detectable in 
Colon samples. And in non-tumor Colon single-cell 
samples, researchers identified cycling B cells around GC 
cells after dimensionality reduction Smillie et al. (2019) 
(Fig. 3e), which suggest that the origin of cycling B cells 
is GC. Even if the ratio of cycling B cells were limited in 
Colon samples (Fig. 3e), the high expression levels of 
their marker genes were significantly correlated with 
better survival in Colon cancers (Fig. 3f), and their 
existing may reverse the prognostic effects of many other 
cell cycle related genes in Colon cancers (Fig. S4). These 
findings all suggest the specific microenvironment in 
Colon cancers, and indicate that cycling B cells are 
important in Colon cancer progression. 

CONCLUSION 

In cancers, fibroblast cells express numerous 
dysregulated genes, and are associated with patients’ 
overall survival. GzmA expressed by NK or T cells is 
significantly correlated with the dysregulation of 
fibroblasts in cancers. There is a higher amount of cycling 
B cells in Colon cancers, which is correlated with Colon 
cancers’ clinical outcomes. 
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