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A Passenger Flow Prediction Model Based on Graph Convolutional 
Network with Multivariate Spatio-temporal Correlation 

                                                                                                     MA Ying*, LI Yang 

ABSTRACT 

Accurate prediction of short-term passenger flow is very important for rational planning and stable operation of cities, 
however, the problem of passenger flow prediction faces many challenges, including both the establishment of an 
effective spatio-temporal dynamic model structure and the necessity to comprehensively consider a variety of factors 
affecting the explicit and implicit passenger flow. So, a Multi-Variate Spatio-Temporal Correlation Graph Convolutional 
Network model (MVSTCGCN) is proposed. The model utilizes three kinds of spatially correlated graphs to construct a 
base graph, which is combined to capture spatio-temporal features globally; temporal attention mechanism, spatial 
attention mechanism, graph convolution operation, and spatio-temporal convolution constitute the spatio-temporal 
graph convolution module to capture local spatio-temporal features; meanwhile, the core module of graph convolution 
network is improved by being integrated wavelet transformation operators. The model is validated by New York taxi 
YellowTrip dataset and self-built dataset respectively; the simulation experiments show that the performance of our 
algorithm has more obvious advantages compared with other excellent algorithms. 

INTRODUCTION 

In recent years, the rapid development of intelligent 
transportation technology solutions has greatly promoted 
the development of smart cities and brought great 
convenience to citizens. However, the increasing passenger 
flow has brought great pressure to the transportation 
system, which is in conflict with the bottleneck of the 
existing urban infrastructure. In order to promote the 
efficient and safe operation of intelligent transportation 
system, the importance of scientific prediction of short-
term passenger flow changes is highlighted. So, short-term 
passenger flow prediction (STPFP) is one of the research 
hotspots in the field of transportation planning and 
intelligent transportation system Wu et al. (2023), mainly 
because: on one hand, accurate prediction of the recent 
passenger flow can help operators of the transportation or 
service industry to understand the passenger travel 
demands in time, and develop scientific and reasonable 
operation schedules to make the transportation system 
operation more convenient and efficient; on the other 
hand, according to the results of passenger flow prediction 
timely deployment of vehicles, to ease the congestion in 
the peak period, to ensure the safety of passenger travel. 

Early traffic flow prediction methods mainly are time series 
analysis method, predict the future flows by mining the 
change rules in historical data. The representative methods  

 

 

include: autoregressive integral moving average model 
(ARIMA) Williams et al. (2003), Zhang et al. (2018), Wen 
et al. (2022), vector autoregressive model (VAR) Lu et al. 
(2016), Kalman filtering model Lippi et al. (2013), and 
etc. These time-series-based methods of the short-term 
traffic flow prediction in the actual task show the 
relatively lower accuracy, therefore are not widely used 
and promoted. In order to extract the nonlinear features 
in the passenger flow, some machine learning methods 
have been applied to short-term traffic flow prediction, 
such as the simple Bayesian algorithm (Naive) Zhang et 
al. (2017), the support vector machine (SVM) Zhang et 
al. (2018), and etc. However, the performance of these 
algorithms depended on the quality of the manual 
feature extraction, which is inefficient and error-prone. 
With the advancement of technical means, deep learning 
models are gradually introduced into the field for 
automatic extraction of more potential features. Deep 
learning models represented by convolutional neural 
network (CNN) and recurrent neural network (RNN) 
Wu et al. (2021), which perform spatial feature extraction 
and temporal modeling of traffic flow data respectively, 
have achieved a large improvement in prediction 
performance compared with previous schemes. 
However, limited by the algorithmic mechanism, the 
topological relationship between regional networks and 
the spatio-temporal connection between different nodes 
are not fully explored.  

School of Electronic and Information Engineering, Xi’an Technological University, Xi’an,710032, China. 

Correspondence to: Dr. MA Ying, School of Electronic and Information Engineering, Xi’an Technological University, 
Xi’an,710032, China. E-mail: innovator@163.com. 

Keywords: Short-term passenger flow prediction, Graph convolution network, Wavelet transformation, Temporal 
attention mechanisms, Spatial attention mechanisms. 

943 



 

 
 

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 6 

ORIGINAL ARTICLE 

Human Biology (Nov-Dec)2024, Vol 94, Issue 6, pp:943-953 Copyright ©2024, Human Biology, visit humbiol.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Graph Convolutional Networks (GCN), which have a 
strong modeling ability for non-Euclidean geometric 
structures and can well capture the spatio-temporal 
correlation properties of topological data, have begun to 
be applied to traffic flow prediction. Bruna et al. (2013) 
firstly proposed Graph Convolutional Neural Network, 
which applied convolutional layers to graph data. Yu et al. 
(2017) proposed Spatial-Temporal Graph Convolutional 
Networks (STCBN), which consists of multiple spatio-
temporal convolutional blocks in a "sandwich" structure 
in order to establish spatio-temporal relationships. Wu et 
al. (2023) proposed the AMGC-T model to discriminate 
the similarity of each city, so the cities with less data 
resources can use the transfer learning method. Tang et al. 
(2022) proposed the SPRNN model to extract spatial 
features by using the structural information of the roads, 
such as road connections, road density, etc. Wu et al. 
(2019) proposed the Graph WaveNet model, which 
integrates the Gated TCN and the GCN , and can capture 
spatial and temporal information in the ST data analysis to 
capture spatio-temporal information. Bai et al. (2020) 
proposed an AGCRN model, which can automatically 
capture spatio-temporal correlation.  

Among them, the spatial temporal graph neural network 
(ST-GNN) Wu et al. (2021) is relatively achieved better 
effects and more recognized, which can predict the trend 
of passenger flow by combining the spatial graph 
convolution block and time series model.  

However, accurate prediction of short-term passenger still 
faces some challenges. This is due to the fact that short-
term passenger flow variations are affected by a variety of 
complex factors, and existed models are difficult to take 
into account the influence of external factors, such as 
weather, temperature, air quality, and other factors. In 
addition, it is not possible to take advantage of the various 
cyclical characteristics of traffic flow and the inability to 
establish deeper spatial and temporal relationships 
between nodes in the transportation network that are far 
away from each other, and the performance of most of the 
models is susceptible to the effects of the embedding 
functions and the hyperparameters. 

In order to solve the above problems, a Multi-Variate 
Spatio-Temporal Correlation Graph Convolutional 
Network (MVSTCGCN) is proposed. The model is 
composed of two parts: the first part is the spatio-temporal 
information extraction module, which consists of 
temporal attention (TA), spatial attention (SA), and graph 
convolution for extracting local spatio-temporal features; 
and the second part is the fusion module, which combines 
local features extracted from different graphs to obtain 
global spatio-temporal features for predicting the 
passenger flow. The main innovations of our model are as 
follows: 

（1）A short-term passenger flow prediction model 
based on deep learning framework is proposed to utilize 
the heterogeneous spatial correlation between regions for 
regional level passenger flow prediction, along with input 
features. For example, weather, temperature, etc. More 
specifically, we construct three different graphs for each 
city region, i.e., distance graph, interaction graph and 
correlation graph. Those graphs are fused to fully exploit 
the dynamic correlation information between their 
individual regions. Meanwhile, the model utilizes three 
kinds of periodic (recent, daily, and weekly) time series 
information on the input side, and fuses data from 
multiple sources, including historical foot traffic, weather, 
temperature, etc. 

（2）The wavelet transform and Chebyshev fusion 
operator are proposed to replace the graph Laplace 
operator. The Chebyshev graph convolution (ChebNet) 
approximates the graph Laplace operator with Chebyshev 
polynomials, but ignores the multiscale information of 
spatial structure. Since the wavelet transform is able to 
extract the graph information from a multiresolution 
perspective, we fused wavelet transform to realize graph 
convolution, which is capable of capturing the higher-
order nonlinear features of the graph data and also can 
pay attention to the multiscale information of spatial 
structure, as compared to ChebNet alone. 

（3） A novel spatial and temporal attention 
mechanism is proposed to capture spatio-temporal 
features. When performing graph convolution, we 
combine the adjacency matrix A with the spatial attention 
matrix S' Є RN×N In combination, the weights between 
nodes can be adaptively adjusted, and spatio-temporal 
relationships can be better established for nodes that are 
far away from each other. 

In this paper, the effectiveness of our algorithm is 
validated by using publicly available datasets. The results 
show that the MVSTCGCN algorithm proposed in this 
paper has more significant advantages over other recent 
algorithms. 

INTRODUCTION TO GCN 

Definition of the problem 

In urban passenger flow researches, crowd flow has great 
differences in different areas of the city. In order to 
evaluate and analyze the characteristics of the heat map of 
crowd flow in each region of the city, we form N regional 
networks based on longitude and latitude, and according 
to the administrative subdivisions of the city regions in the 
dataset.  

Taking Xi'an city as an example, its passenger flow at a 
certain moment is schematically shown in Fig. 1. 
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 Figure 1: Heat Map of Xian's Pedestrian Flow 

 

Definition 1: Based on the topology of the transportation 
network, define the inflow graph GI = (U, E, AI ) and 
outflow graph GO = (U , E, AO )  ,where U = (N1 , N2 ...Nn 
) is a set of N regions. E is an edge between two regions. 
A1 Є RN×N is the adjacency matrix of the inflow graph and 
A0 Є RN×N   is the adjacency matrix of the outflow graph. 
In each time period, the eigenvalues of each region are 
represented by Yao et al. (2018), which mainly contains 
weather, temperature, and pedestrian flow. 

Definition 2 :  xt
kf Є (xt

k1,..., xt
kF ) Є RF , k Є U , f Є F . f  

represent the eigenvalues of the kth region at time t. xt =（
xt

1,..., xt
N ) Є RN×F represents the values of all features of 

all nodes at time t. x = (x1 ,..., xm ) Є Rm×N×F represents all 
eigenvalues of all nodes in the past m time periods. y = ( y1 
,..., yτ ) Є Rτ×N represents all eigenvalues of all nodes for 
the predicted time period τ .The short-time passenger flow 
prediction utilizes the feature correlation of each node 
prediction as shown in Figure 2. 

Figure 2: Short-term Patronage Forecasts 

 

Graph Convolutional Networks (GCN) 

Let  D Є RN×N  be the degree matrix of inflow graph GI 
and outflow graph GO , where di = ∑ j Aij  denotes the  

degree of node i Є 1,..., N . The theoretical basis of graph 
convolution in spatial dimension is to generalize the 
traditional data convolution operation based on grid 
structure to a wider range of graph structure data. 
According to Shuman et al. (2013), the traffic network can 
be essentially abstracted into a graph structure, in which 
each traffic node can be regarded as a signal on the graph. 
In order to fully exploit the feature information of the 
traffic network in terms of topology, we use the graph  

 

 

convolution operation based on spectral graph theory to 
directly process the signal data of each node at each time 
step.  

Specifically, the algorithm exploits the signal correlation 
between the nodes of the traffic network in the spatial 
dimension. In addition, the spectral graph method is able 
to analyze the important properties of the graph structure, 
such as node connectivity, by representing the graph as an 
algebraic form, providing theoretical support for the 
subsequent exploration of the spatial structural 
relationships of the traffic network using the graph 
convolution network model.  The symmetric normalized 

Laplace matrix of graph G is defined as: L =𝐷
1

2 (D - A) 

𝐷
1

2 2 = IN – 𝐷
1

2 2 A𝐷
1

2, The eigenvalue decomposition of 

Laplace matrix L is: L = U𝝠UT. Given the input x Є RN , 

the Fourier transform is defined as: 𝑥= UT x, The inverse 

Fourier transform is defined as: x = 𝑈𝑥.  

Define the graph convolution operation in the Fourier 
domain as: 

m *G n = U (UTm)□(UTn) 

where ⊙ denotes the element-by-element Hadamard 
product,and *G represents the graph convolution 
operation. The parameterized Fourier filter is defined as: 

              gƟ G= gƟ (L)x = gƟ (U UT )x = UgƟ ()UT x  

Here the parameter Ɵ Є Rn. When large-scale graphs are 
subjected to Laplacian eigenvector computation, it is 
generally difficult to compute the eigenvalue 
decomposition of the global Laplacian matrix directly, in 
order to speed up the convolution process, the          

Chebyshev polynomials Tk (𝝠) of truncated expansions up 
to order k Defferrard et al. (2018), and the approximation 
can be expressed as: 

 

Here 𝐿̃ =
2

⅄𝑚𝑎𝑥
L-In, where ⅄max represents the largest 

eigenvalue of L, Ɵ = (Ɵ0 ,...,Ɵk-1)T Є RK . The Chebyshev 
polynomial realization of GCN can be defined as: 

 

Here 𝐿̃ =
2

⅄𝑚𝑎𝑥
L-In, the Chebyshev polynomials are Tk (x) 

= 2xTk −1(x) − TK −2(x). 

Multivariate Spatio-Temporal Correlation Graph 
Convolution (MVSTCGCN) Modeling 

The architectural diagram of the MVSTCGCN model 
proposed in this paper is shown in Figure 3: 
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 Figure 3: MVSTCGCN Model Diagram 

 

Overview of the Framework 

(1) Graph construction: The division of the grid has 
significant effects on the prediction results of the 
algorithm. It has been shown that the prediction based on 
a single station is not effective Zhou et al. (2020). 
Therefore, we propose to describe the urban traffic flow 
system by utilizing the regional composition graph. The 
nodes in the graph represent the divided regions, and the 
edges connect different regions to indicate the spatial 
relationship between them. In order to make full use of 
various relevant information that may affect the 
prediction, we constructed three graph structures, namely, 
the distance graph, the interaction graph, and the 
correlation graph, which are mainly used as the adjacency 
matrix of GCN in the spatio-temporal convolution block 
(ST-GCNBlock), reflecting the relationships between 
regions from different perspectives. Since the features 
extracted from different graph structures are quite 
different, the distance and correlation graphs are fused 
using the adaptive gating mechanism, and then input into 
the interaction graph to fully correlate the features of 
different graphs and let the graphs interact with each 
other, and finally the prediction results are obtained from 
the correlation graph, which is a kind of multi-graph 
fusion that can fully mine the regional correlation laws, 
and is conducive to the time-series prediction of the 
distributed regions. 

(2) Spatio-Temporal Graph Convolution Module ( ST-
GCNBlock ): This module is the core component of this 
model, which consists of three parts, similar to a 
"sandwich structure". The first part is temporal attention, 
which focuses on the time series information in traffic 
data. The second part is the Wavelet Chebyshev Graph 
Convolution (W-CGCN) which incorporates the spatial 
attention mechanism. This part focuses on high-order 
nonlinear and multi-scale capturing of traffic data in terms  
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of topology to fully explore the spatial correlation among 
its various regions. The third part is the temporal 
convolution module, STPFP is a typical temporal 
prediction problem, which is finally convolved in the time 
dimension to further update the temporal information of 
each node. 

Model Inputs 

We construct the input to MVSTCGCN to contain three 
time series segments with lengths Tr , Td and Tw along the 
time axis, i.e., the current time input, the daily interval 
input and the weekly interval input, respectively. Let q be 
the sampling frequency (q times per day), t0 is the current 
time, and Tp is the size of the prediction window, then 
these three time series fragments can be calculated as 
follows: 

 

Constructing Draph 

The graph representation method can fully explore the 
non-Euclidean relationship of the problem to be 
optimized. The rational graph structure can effectively 
optimize the learning parameters and improve the model 
prediction ability. Here, three kinds of graphs are 
constructed, namely, distance graph, interaction graph, 
and association graph. 

Attributed distance graph (ADG): In the model, the 
ADG is constructed by the distance relationship between 
nodes firstly. The distance graph adopts the reciprocal of 
the spatial distance between nodes as the connection 
weight, which makes the expression between nodes with 
closer spatial distance closer. The ADG is defined as: 

 

where disij = distance (Ni , N j ) , represents the distance 

between region i and region j. 

Attributed correlation graph (ACG): The ACG is 
constructed based on the functional correlation of nodes. 
The connection weights are set according to the 
correlation degree of functional attributes of nodes, which 
makes the expression between nodes with stronger 
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 functional correlation closer. 

 

where 

 

is the Pearson coefficient, representing the degree of 
correlation between region i and region j. 

Attributed interaction graph (AIG): In order to 
represent the interaction relationship between nodes, the 
AIG is constructed. The AIG sets connection weights 
based on the correlation of interaction behaviors between 
nodes, highlighting the correlation of interaction 
behaviors. 

 

Where dij represents the history of interaction between 
region i and region j, i.e., thefoot traffic in region i may 
affect the foot traffic in region j, then the record of 
interaction between the two regions dij increases. 

Temporal and Spatial Attention Mechanisms 

The spatio-temporal attention mechanism is introduced in 
the model to capture the dynamic spatio-temporal 
correlation in the transportation network, focusing on the 
spatio-temporal relationship between nodes that are far 
away from each other. It consists of two parts: spatial 
attention and temporal attention. 

Spatial Attention Mechanism: Spatial attention is used 
to learn the dynamic relationships between traffic regional 
points in the spatial dimension. Since the traffic conditions 
at different locations interact with each other, we use the 
attention mechanism to adaptively capture the strength of 
the relationship between nodes, and assign different 
importance degrees to them, and use the sigmoid 
activation function to perform a nonlinear mapping of the 
graph structure data in the spatial dimension to enhance 
the spatial representation ability. Let Z Є RBatch×F×T ×N be 
the input of ST-GCNBlock, S' Є RN×N  is defined: 

Zs [N, B, F,T ] = Z[B, F,T , N ] 

 

 

S = sigmoi d(((Zs W1 )W2 )(W3 (W4 Zs
T )) + a1 ) 

 

whereW Є RT , W Є RF ,W Є RF ,W Є RT , a1 Є RN×N  are 
the corresponding parameters of spatial attention 
mechanism, along with j Є Batch , k Є N . 

Temporal Attention Mechanism: In temporal 
dimension, the correlation between nodes is dynamically 
changing, as the traffic characteristics of the same location 
vary at different times. For this reason, we use a similar 
attention mechanism to autonomously learn and 
differentiate the level of importance of features. The 
temporal attention mechanism E' Є RN×N  is defined as: 

Ze [N, B, F, T] = Z[B, F,T , N ] 

E = sigmoid (((Ze U1 )U2 )(U3 (U4 Ze
T )) + b1 ) 

 

Where U1 Є RT ,U2 Є RF ,U3 Є RF , U4 Є RT , b1 Є RN×Nare 
the corresponding parameters of spatial attention 
mechanism, along with j Є Batch , k Є N . 

Wavelet-Chebyshev Gragh Convolution (W-CGCN) 

Graph convolution neural networks have been widely 
adopted as a powerful framework for unstructured data 
processing in many tasks. Traditional harmonic graph 
convolution methods such as Chebyshev graph 
convolution (ChebNet) approximate the graph Laplace 
operator with Cheby polynomials, but it ignore the multi-
scale information of spatial structure. The wavelet 
transform is capable of extracting graph information from 
a multi-resolution viewpoint, but it is difficult to express 
high-order nonlinear relationships when used alone. A 
harmonic graph convolution method based on wavelet-
Chebyshev polynomial approximation is proposed to 
compensate for the shortcomings of the existing methods 
by utilizing both wavelet transform and Chebyshev 
polynomial techniques, which is equivalent to fusing 
multiscale information by learning the weights of its 
components at different scales. The principle of 
convolution kernel realization using wavelet transform 
and Chebyshev is as follows: 

Let the graph Laplace matrix be L, whose maximum 

eigenvalue is max . Obtain the low-frequency components 

of  L: 

𝐿̃ = LowPass(L) 
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 where LowPass denotes frist level of wavelet low-pass 
filtering: 

LowPass(L) = j 
L[ j] j 

where  j denotes the low-pass basis function in first level 
wavelet analysis. 

That is, 𝐿̃ is obtained by first-level decomposition of the 
original Laplace matrix L by wavelet transform, being 
keeped the low-pass component and multiplied the low-
pass basis. The original Laplace matrix L contains all the 
frequency information, so it would take excessive noise 
components if be used directly. The low-frequency 

component 𝐿̃ is  taken  to  filter out  the high-frequency 
noise, and  a  smooth approximation matrix is obtained. 

Normalize the transformation of 𝐿̃, and get 𝐿̃ ' . Normalize 

the eigenvalues of 𝐿̃ ' to facilitate the subsequent 
approximation using the Chebby harmonics. At the same 

time, 𝐿̃ is mapped into the definition domain [-1,1], which 
matches the Chebyshev polynomial term Tk (x) definition 

domain term, and will not change the 𝐿̃  structure 
information in the original space. The standard variation 
formula is: 

 

The W-CGCN filter is defined using Chebyshev 
polynomial approximation as: 

 

where Tk  is a kth order Chebyshev polynomial, θ is a filter 
parameter; wavelet variation of the Chebyshev term: 

Ck
wt = DWT (Tk (𝐿̃ ' )) 

Among them, DWT denotes the first-level discrete 
wavelet transform, and the specific equations are: 

where  j,n  and  j,n  denote the impulse response function 
and wavelet function composed of Hal's wavelet basis, 
respectively. 

Wavelet inversion transformation is defined as: 

Tk (𝐿̃ ' )recons = IDWT (Ck
wt ) 

Where, IDWT  denotes the inverse wavelet transformation, which 
is given by 

 

 

 

The W-CGCN graph convolution is defined as. 

 

Spatial-Temporal convolution block (ST-GCNBlock) the 
spatial-temporal convolution module consists of temporal 
attention mechanism (Tatt), spatial attention mechanism 
(Satt), wavelet Chebyshev graph convolution (W-CGCN), 
spatio-temporal convolution. Specifically, the input 
feature is denoted as  Z Є RBatch×F×T×N, Z' will be obtained 
by using the temporal attention mechanism: 

 

Then, we analyze the graph structure using wavelet-
Chebyshev graph convolution to extract the features in the 
Spatial domain, and integrate a spatial attention 
mechanism in order to dynamically adjust the weights 
between nodes.  

 

Z '' Є RBatch×F1×N×T is a standard convolutional layer 
stacked on the time dimension of all nodes features 
extracted after graph convolution Guo et al. (2019). Using 
ELU for feature mapping, the model can learn the 
information of the nodes on the neighboring time 
segments, thus updating each node features. The time 
convolution operation is defined as: 

Z ''' = ELU (  Z '' )  RBatchF1N T1 

Where 𝜑 represents the convolution kernel size, ∗ 
represents the convolution operation, and the ELU is the 
activation function. 

Multi-Graph fusion 

As shown in Figure 3, the model consists of two main 
parts, corresponding to spatio-temporal information 
extraction and spatio-temporal information interaction. 
The first part consists of two graph structures, ADG and 
ACG, which constitute the ST-GCNBlock module to 
extract spatio-temporal information, and produces a total 
of three groups of results, with two graphs in each group, 
such as Zi1(ADG)  , ie [1,2,3] denotes the first graph of group 
i (ADG). The traffic flow features generated by different 
graph structures are different, and the use of adaptive 
gating mechanism to fuse the features of the two graphs 
generated in each group can effectively play the role of 
each graph. In the second part, the ST-GCNBlock 
composed of AIG graphs is used for the interaction of 
features between different graphs, and finally the results 
of the three groups graphs are stacked, and the ACG 
graphs are used for the feature correlation to obtain the  
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 passenger flow prediction results. 

i = (Z'
i1(ADG)

''
+ Z'''

i2(ACG)) 

 

where ,  (0,1) M '''  RBatchNF1T1 

Experimentation and Analysis 

This section will analyze the experimental results in order 
to verify the validity of the algorithm through the 
experimental dataset. 

Experimental data 

1. Xi'an Tourism Shuttle Bus Data Set 

The dataset used in this experiment is derived from the 
travel records of Xi'an tour group travelers provided by a 
technology company, which is a partner of the project. The 
city of Xi'an is located in Shaanxi Province, China, with a 
geographic location ranging from 107.40°to 109.49°east 
longitude and 33.42°to 34.45°north latitude. The plan is 
divided into 20 × 10 equal-sized tracts. The dataset covers 
the period from August 1, 2019 to October 31, 2019, and 
traffic flow were sampled and recorded at equal time 
intervals (1 hour) to form time series data. The dataset 
contains 24 attribute fields with 1,975,997 records, mainly 
recorded the information of taxi ride types, business types, 
departure time, departure locations, driving time and 
destinations. In addition to the traffic flow data, we also 
collected the weather and air quality monitoring data of 
Xi'an during the same period. Finally, through the discrete 
sampling of region and time, the complex information 
from multiple sources is fused to form a multidimensional 
time series data structure. 

2. New York Yellow Taxi Trip Dataset 

This dataset records data on New York City cab trips, 
including the following fields: date and time of pick-up and 
drop-off, location of pick-up and drop-off, distance 
traveled, sequential fare rate, type of rate, method of 
payment, and number of passengers reported by the 
driver. These taxi operation data are captured and 
provided to the NYC Taxi and Limousine Commission 
(TLC) by a licensed technology vendor under the authority 
of the NYC Taxi and Professional Vehicle Passenger 
Enhancement Program (TPEP/LPEP). The time frame of 
the dataset is from January 1, 2022 to February 28, 2022, 
with a total of 18,867,724 data, which were sampled and 
recorded using equal time intervals (1 hour). In summary, 
the dataset covers real-time taxi operation data within New 

 

 

 

York City, providing rich information for modeling and 
forecasting studies. 

Experimental setup 

The simulation environment is Linux system, CPU is Intel 
i9-13900H, GPU is NVIDIA GeForce RTX 4060Ti, and 
the deep learning framework is MXNet. The recent time 
series Tr is set to 23 hours, the daily cycle time series Td is 
set to 3 days, the periodic time series Tw is 2 set to weeks, 
the prediction time is Tp is set to 3 hours, the Epochs is 
set to 200, and the optimizer is Adam. 

Assessment methodology 

The performance of our algorithm was evaluated using 
root mean square error (RMSE) and mean absolute error 
(MAE). 

 

Where N represents the N regions predicted, yi  is the value 
to be predicted and  yi is the true value. 

Model Comparison 

The MVSTCGCN was compared with the following 
newer research achievements. The experiment runs 10 
times, and selects the best convergence results of each 
algorithm. The results are shown in Table 1 and Figure 4. 

Figure 4:  The Iterative process of different algorithms 
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STGCN Yu et al. (2017) (Spatial-Temporal Graph 
Convolutional Network): uses a graph convolutional 
network and incorporates a temporal convolution module 
with a sandwich structure. 

DGCNN Diao et al. (2019) (Dynamic Spatial-Temporal 
Graph Convolutional Neural Network):A method for 
estimating the dynamic Laplacian matrix. 

ASTGCN Guo et al. (2019) (Attention-based Spatial-
Temporal Graph Convolutional Network): introduces a 
variety of temporal attributes such as recent, periodic, and 
spatial-temporal attention mechanisms. 

Graph WaveNet Wu et al. (2019) (Graph Wave 
Network): integrates gated loop cells and graph 
convolutional networks to model both temporal and 
spatial information. 

MSTIF-Net Jin et al. (2020) (Multi-source Spatial-
Temporal Information Fusion Network): combines GCN, 
VAE, Seq2Seq and other mechanisms to process traffic 
data. 

AGCRN Bai et al. (2020) (Adaptive Graph Convolutional 
Recurrent Network): automatic learning of spatial and 
temporal correlations. 

GMAN Zheng et al. (2020) (Graph Multi-Attention 
Network):Learning graph structure and temporal 
information through node embedding and linear mapping. 

STFGNN Li et al. (2021) (Spatial-Temporal Fusion 
Graph Neural Network): constructs temporal correlation 
graphs and designs spatial-temporal fusion mechanisms. 

As shown in Table 1, in general, other non-graph neural 
network deep learning models (e.g., FC-LSTM, CNN, 
etc.), which ignore the correlation between nodes in spatial 

dimension, are not as good as graph neural network 
models designed using graph convolutional units in traffic 
prediction tasks. Although some GCN models using only 
a single graph structure (e.g., ASTGCN, etc.) have 
achieved relativelygood results in terms of convergence 
accuracy, they still need to be improved in terms of 
convergence speed and prediction accuracy. In contrast, 
those GCN models based on adaptive learning graph 
structure (e.g., DGCNN, GMAN, etc.) focus on the 
dynamic changes of node relationships while ensuring the 
prediction accuracy. 

Figure 4:  The Iterative process of different algorithms 

 

Another class of models utilizing multiple graph structures 
(e.g., MSTIF-Net, etc.) provides richer spatial information 
for the model, which helps to uncover the implicit 
relations on the traffic features. In addition, the 
simultaneous collection of multi-source inputs from the 
time dimension can help the model to acquire more 

Table 1: The performance of different algorithms 

Model 
Xian Yellow Trip 

MAE RMSE MAE RMSE 

CNN 18.53 80.74 16.06 45.38 

LSTN 19.25 84.75 17.64 47.67 

STGCN 19.88 82.98 15.58 47.98 

ASTGCN 2.72 12.5 3.55 12.47 

GMAN 7.52 22.29 4.61 13.36 

ASTGCN 2.72 12.5 3.55 12.47 

Graph WaveNet 6.98 30.43 5.39 16.56 

STFGNN 8.52 40.68 5.8 18.94 

MSTIF-Net 7.05 31.49 5.96 19.39 

DGCNN 4.88 20.27 13.38 28.45 

MVSTCGCN 2.32 8.97 2.1 5.31 
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Table 2: The performance of different structure graph 

Model Xian  Yellow Trip 
 MAE RMSE MAE RMSE 

ACG ACG ACG ACG 3.39 12.12 2.25 6.58 

ADG ADG ADG ADG 3.75 16.27 2.21 6.6 

AIG AIG AIG AIG 3.44 14.02 2.23 6.54 

ACG ACG ADG ACG 3.28 12.32 2.16 6.14 

ACG ACG AIG ACG 3.73 14.44 2.27 7.27 

ACG ADG AIG ACG 2.32 8.97 2.1 6.31 

ACG AIG ADG ACG 3.82 16.88 2.52 6.67 

ADG ADG ACG ACG 3.72 17.49 2.98 6.65 

ADG ADG ADG ACG 3.08 12 2.66 6.43 

ADG ADG AIG ACG 2.84 10.47 2.18 6.51 

ADG AIG ACG ACG 3.33 13.59 2.85 6.36 

AIG AIG ACG ACG 3.62 14.56 2.38 7.09 

AIG AIG ADG ACG 2.91 10.27 2.57 6.64 

AIG AIG AIG ACG 3.05 10.59 2.83 8.28 

 

 

adequate time-dependent knowledge (e.g., ASTGCN, etc.), 
which performs well and further improves the prediction 
performance.  

As shown in Table 1 and Fig. 4, MVSTCGCN utilizes 
multi-graph fusion to fully explore the relationships of 
spatio-temporal data in all dimensions and provides rich 
input features, which can establish deep spatio-temporal 
relationships between two nodes that are far away from 
each other, and the algorithm performs better compared to 
the other baseline models both in terms of the convergence 
accuracy and convergence speed. 

Ablation experiments 

Three graph structures are constructed in the 
MVSTCGCN model, and different graphs contribute 
differently to the model, so the permutations of different 
forms of graphs are used as hyperparameters of the model. 
In order to select the best combination of graphs with 
optimal performance and more interpretable, we choose a 
total of 14 combinations for experimentation and finally get 
(ACG,ADG,AIG,ACG) works best.  

By analyzing Fig. 5 and Table 2, it can be seen that the AIG 
graph mainly carries out the interaction between different 
graphs, the ACG graph mainly carries out the correlation 
between different graphs, and the ADG establishes the 
topological structure, thus verifying the role of the model 
in designing these three types of graphs, which is in line 
with the expected results. 

Figure 5: Comparison of the performance of different 
structure diagrams 
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 One of the crucial factors in the model is the use of 
Wavelet-Chebyshev graph convolution. In order to verify 
the role of wavelet transform and Chebyshev polynomials 
in graph convolution process, we do the corresponding 
experiments, as shown in Figure 6. The convergence speed 
with wavelet transform is faster and the RMSE is lower 
than model without wavelet transform, which indicates 
that the graph convolution implemented by Chebyshev 
polynomial integrated with wavelet transform is more 
effective in extracting multi-scale features and further 
more accelerates the convergence speed. 

Figure 6:  Comparison of the Role of Wavelet Transform 

 

The influence of historical cycle characteristics of different 
time granularity on the prediction effect is important, and 
it is also one of the important hyperparameters. The 
MVSTCGCN model is executed on different datasets with 
different values of Tr, Td, Tw and Tp to observe the RMSE 
trends, as shown in Fig. 7. Overall, the RMSE trends on 
different datasets are similar, which verifies the good 
generalization ability of the model. In both datasets, the 
optimal value of Tp is 3 hours. 

Figure 7: Effects on different hyperparameter values 

 

CONCLUSION 

In this paper, we proposed the MVSTCGCN model for 
the traffic flow prediction task. The MVSTCGCN model 
utilizes spatio-temporal convolutional blocks composed 
of three different graph structures (distance graph, 
interaction graph, and correlation graph) to capture the 
features representation of traffic nodes in the spatio-
temporal domain.  

In order to realize multi-scale learning, we integrate 
wavelet transform with the Chebyshev graph convolution. 
In addition, we design a temporal attention mechanism 
and spatial attention mechanism so that the model can 
learn the spatio-temporal dependency relationship 
between more distant nodes. The input fuses multiple 
information and relies on spatio-temporal convolutional 
blocks composed of three graph structures to capture the 
spatio-temporal features of traffic flow data. We simulate 
comparative experiments with some existed traffic 
prediction models. The experimental results show that our 
proposed MVSTCGCN model achieves better prediction 
performance on test datasets and also converges faster. 

In future work, we will further improve the MVSTCGCN 
model structure to further increase the granularity of 
prediction. More feature information on the input side can 
be fused to get further faster convergence speed of the 
algorithm. On constructing different graph structures, we 
can mine more valuable graph structures and establish 
diversified topology information, so as to achieve richer 
characterization of transportation networks. 
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