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Mult- Omics Approach-Based Autophagy Pathway Analysis in Alzheimer’s 

Disease 

                                                                                                                                                                   Dong Xiaa 

ABSTRACT 

Autophagy, as an important cellular protective mechanism, is closely associated with the occurrence and progression of 
neurode- generative diseases such as Alzheimer’s disease.  However, the specific mechanisms underlying autophagy in 
neurodegenerative diseases remain unclear, and there are still many unknowns regarding its detailed regulation and 
involvement mechanisms.  In this study, we aimed to use a multi-omics bioinformatics approach to integrate large-scale 
transcriptomic data and identify a series of autophagy key genes, namely CDKN2A, CXCR4, and IFNG, whose expression 
levels significantly differ between disease pa- tients and normal controls.  Additionally, single-cell omics data will be 
supplemented to further investigate these findings.  Our goal is to provide important clues for unraveling the pathogenesis 
of Alzheimer’s disease and potentially identify novel targets for future therapeutics and diagnostics.  Furthermore, by 
incorporating Mendelian randomization analysis, we will explore the causal relationships between vascular inflammation, 
depression , and mood fluctuations with Alzheimer’s disease to provide insights into the associations among these related 
diseases and offer a theoretical basis  and clinical application value for their treatment and prevention. 

INTRODUCTION 

Alzheimer’s disease is a progressive neurodegenerative dis- 
order characterized by pathological changes in the brain, 
lead- ing to a gradual loss of cognitive and memory 
functions Ossenkoppele et al. (2015).  It ultimately results 
in the loss of the ability to perform activities of daily living, 
posing significant psychological and physiolog-ical 
challenges for patients and their families, as well as a major 
challenge for medical research Poncet et al. (2011). 

Currently, there   is   no   effective   treatment   available   
for Alzheimer’s disease, and interventions with medications 
of- ten only provide symptomatic relief without slowing 
down the progression  of the  disease  Mahmoudi et al. 
(2014).     Research has indicated that Alzheimer’s disease is  
associated  with  the  accumulation  of beta-amyloid protein 
in the brain, leading to the formation of neurofibrillary 
tangles and amyloid plaques, which are linked to neuronal 
dysfunction and cell death, ultimately resulting in the decline 
of cognitive and memory functions Dohler et al. (2014), 
Yilmazer-Hanke et al. (1999). 

Autophagy, a  cellular  mechanism  that  involves  the  break- 
down and recycling of cellular components, plays a crucial 
role in maintaining neuronal function and structure  

by clearing ab- normal proteins and organelles Li et al. 
(2015), Xu et al. (2017). 

It holds potential signifi- cance in Alzheimer’s disease by 
aiding in the clearance of beta- amyloid accumulation. 
Thus, autophagy has emerged as an im- portant area  for  
research and the  development  of therapeutic 
approaches for Alzheimer’s disease Funderburk et al. 
(2010).  However, the specific mechanisms and 
regulatory pathways of autophagy in neurode- 
generative diseases remain incompletely understood, 
and there is still much unknown regarding the detailed 
regulation and in- volvement of autophagy 
Bostanciklioglu et al. (2019). 

Therefore, in this study, we propose to employ a multi- 
omics approach to comprehensively analyze gene 
expression and reg- ulation within the autophagy 
pathway. By integrating transcrip- tomics with single-cell 
genomics, we aim to gain a deeper un- derstanding of 
the expression patterns, regulatory networks, and 
changes  associated with neurodegenerative diseases.  
This will provide  important research  data  for further  
investigation  into the role  of autophagy  in the  
development  and progression of neurodegenerative 
diseases. 
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  MATERIALS AND METHODS 

Multi-omics data preparation andpreprocessing 

We   will   call   the” GEOquery” package   in   R   software 
Davis et al. (2007) to obtain the  information  for  two   
datasets,    GSE5281 Liang et al. (2007), Liang et al.(2008), 
Readhead et al.(2018), Liang et al.(2008) and   GSE138260    
Nitsche et al. (2021),    from   the    GEO   database 
(http://www.ncbi.nlm.nih.gov/geo/)  online.    We will 
then use the  annotation platform GPL570 - 55999  to 
perform the probe name-to-gene   name   conversion  
operation  on  the  GSE5281 dataset,   and  the   alternative  
annotation  platform   GPL27556 - 55246  to  complete   
the  corresponding  annotation  operation for  the  
GSE138260   dataset.      Subsequently,    we  will  orga- 
nize  and  merge  the   expression  matrices  with  their  
respec- tive  clinical  information  to  obtain  a  merged  
expression  ma- trix.    We  will  then  perform  a union 
operation  with  the  232 autophagy genes provided by the 
autophagy information web- site 
(http://www.autophagy.lu/index.html) to complete the 
ini-tial data organization.   Next, we will use the 
”factoextra”  Soreq et al.(2023) and ”FactoMineR” Alsema 
et al.(2020) packages in R software to perform PCA data  
dimensionality  reduction,  and  calculate  and  display  the 
first and second principal components.  We will use the  
Com- Bat function in the ” sva” package Mundt et al.(2020) 
in R software to correct for batch effects in the merged 
data.  Finally,  we will use the ” limma” package Husson 
SeLeaJJaFcco et al.(2008)  in R software to standardize the 
merged data.  The aforementioned steps will complete the 
data prepro- cessing and organization for the two datasets, 
preparing for sub- sequent data mining and analysis. 

Transcriptomic gene differential expression studies 

We  performed  differential  gene  analysis  on  the  
transcrip- tomic  data using the  ”limma ” package in R  
software.   A log fold  change  (logFC) threshold of +0 .4  
and  -0 .4  was  set,  and genes with  a P-value less than 0.05 
were  selected for further analysis Wang et al.(2022).  The 
resulting  differentially expressed genes for each  sample  
were  obtained,  and  volcano plots  and heatmaps were 
generated to visualize the differential gene expression. 

To construct the volcano plot, differentially expressed 
genes were plotted based on their logFC values on the x- 
axis and their corresponding statistical significance (e .g. , -
log10(P-value)) on the y-axis.  Genes with  a larger absolute 
logFC  and a  smaller P-value were represented with larger 
dots, indicating more sig-nificant differential expression. 

The heatmap was generated to visualize the expression pat- 
terns  of differentially  expressed  genes  across  samples.   
Clus-tering  algorithms  were  applied  to  group  genes  and  
samples based  on their expression profiles,  and the 
resulting heatmap displayed the expression levels of genes,  

with different colors representing different expression 

levels. 

These visualizations provide  a  comprehensive  
overview  of the differential gene expression patterns 
and aid in identifying potentially  important  genes  and 
pathways  associated with the condition under 
investigation Wang et al.(2022) . 

Multi-omics combined immunoinfiltration analysis 

We utilized the ” IOBR”  package  Xiong et al.(2023)  in 
R  software to in- vestigate  the  degree  and  
composition  of  immune  cell  infil- tration between  
different  samples  using  the  Cell-type  Identi-fication  
By Estimating  Relative  Subsets  Of RNA  Transcripts 
(CIBERSORT) method. CIBERSORT employs 
machine learn-ing algorithms to estimate the relative  
abundance  of various cell types within a complex 
mixture of cells based on the gene expression profiles.   
By  comparing the  expression profiles to pre-
constructed reference labels of different cell types, 
CIBER- SORT predicts the relative abundance of each 
cell type in the mixed cell  sample.  We  then constructed 
multiple boxplots to observe any significant differences 
in immune cell populations. 

Furthermore, using single-cell transcriptomics data, we 
fur-ther   analyzed  the   differences   in   cell  proportions   
between Alzheimer’s disease patients and healthy 
individuals.  We cal-culated module scores for gene sets 
using a custom dataset and employed t-SNE 
dimensionality reduction method to visualize the  
expression profiles  of cells  at  different  levels  of 
immune scores. 

These analyses allow us to gain insights into the 
differences in immune cell composition and function 
between various sam-ples, providing valuable 
information about the potential role of immune cells in 
disease pathology. 

GO,KEGG, GSEA enrichment analysis 

We used the ” clusterProfiler”  package Guangchuang 
et al.(2012)  in R software to  perform  Gene  Ontology  
(GO),  Kyoto Encyclopedia  of Genes  and   Genomes   
(KEGG) ,   and   gene    set   enrichment    analysis  
(GSEA)  on the differentially expressed genes obtained 
earlier.  We  set the threshold for both P- value and q- 
value at 0 . 05  and  utilized the Benjamini-Hochberg 
procedure, denoted as ”BH,” for multiple test 
adjustment. 

This  enrichment  analysis  allowed us to identify the  
signif-icantly  enriched  GO  terms,  KEGG  pathways,  
and  gene  sets associated  with  our  differentially  
expressed  genes.   The  BH method was employed to 
control  for false  discovery rate  and ensure the 
reliability of the enrichment results. 
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 By examining the enriched pathways and functional 
annota-tions, we gained insights into the biological 
processes, molecu-lar functions, cellular components, and 
signaling pathways that are potentially influenced by the 
differential expression of genes in our study. 

PPI network construction and Hub gene screening 

We further analyzed the differentially expressed genes 
from the  transcriptomic  analysis by importing them into 
the  String database (https://cn.string-db.org).  This 
database enabled us to construct a protein-protein 
interaction network and obtain rele-vant data 
information. 

By utilizing the Cytoscape software, we employed the 
MNC algorithm (Multiple-Napsack Clustering  
Algorithm)  to  select the top  10 hub  genes with the 
highest values.   The MNC  al-gorithm  allowed us to 
identify key genes that potentially play important roles in 
the protein interaction network. 

The protein-protein interaction network and the selected 
hub genes provided insights into the potential functional 
modules and biological processes that are influenced by 
these key genes. This analysis further enhanced our 
understanding of the regu-latory mechanisms  and 
molecular interactions underlying the observed 
differential gene expression in our study. 

Construction of Lasso regression model 

To perform single-variable logistic regression on the 
differen-tially expressed genes from the transcriptomic 
data, we utilized the ” glmnet”  package in R  software Tay 
et al.(2023) .   We  selected  genes with a p-value  ¡ 0 . 05  
as candidate genes for logistic regression. To ensure 
reproducibility of the results, we set a random seed and 
specified a maximum of 1000 iterations. 

To reflect the best performance of the model on the 
validation set,  we determined the optimal regularization 
parameter value using cross-validation and plotted the 
number of best genes se-lected  during model training.  
Using the coefficients obtained from  the  model,  we  
integrated  the  data  to  calculate  the  risk scores for each 
sample. 

To evaluate the predictive performance of the model, we 
em-ployed the ”pROC” package in R software Robin et 
al.(2011) to compute and plot the ROC  curve.   This  
quantitative  evaluation  provides  a measure of the 
model’s discriminatory ability. 

By implementing these procedures, we performed logistic 
re-gression  on  the  differentially  expressed  genes,  
identified  the best  genes  using  cross-validation,  
calculated  risk  scores  for each  sample,   and  evaluated  
the  model ’s  performance  using ROC analysis. 

 

 

Key gene screening and establishment of disease 
risk as-sessment model 

To  generate  a  Venn  diagram  summarizing  the  
intersection of genes  from different categories, we 
utilized the ”VennDia- gram” package in R software 
Chen et al.(2022) . We defined five categories: a common 
gene set (Common gene), an autophagy gene set (Au- 
tophagy), a significantly differentially expressed gene set 
(Dif-ference) , a Lasso modeling key gene set (Lasso) , 
and a PPI hub gene  set (Hub).  By visualizing the 
intersections  of these sets, we obtained candidate key 
genes for each category. 

To  identify the final  set of strong candidate key genes, 
we defined them  as genes that are expressed in at least 
four of the module parts.  With the final selection of key 
autophagy genes, we constructed a Nomogram risk plot 
to develop a predictive model for the occurrence of 
Alzheimer’s disease.  To  evaluate and validate the model, 
we employed ROC curves and calibra-tion plots. 

By implementing these procedures, we generated a Venn 
di-agram to display the intersections of genes from 
different cat- egories  (Common  gene,   Autophagy,   
Difference,   Lasso,   and Hub).  We obtained candidate 
key genes for each category and selected the final set of 
strong candidate key genes that are ex- pressed in at least 
four parts.  Using these final key  autophagy genes, we 
constructed a Nomogram risk plot to develop a prob- 
abilistic model for the onset  of Alzheimer’s disease.   
Finally, we evaluated  and validated the model using 
ROC curves  and calibration plots. 

Key gene localization and quasi- temporal analysis 

To  investigate  the  expression  differences  and  
temporal  se- quencing  relationships  of key  autophagy  
genes  at the  single- cell level, we utilized the ” Seurat” 
package Hao et al.(2024) and the ”mon-ocle” package 
Trapnell et al.(2014) in R. This allowed us to perform 
single- cell transcriptomic  cell localization  and pseudo-
time  analysis,  en-abling a deeper understanding of the 
dynamic changes in gene expression within and between 
individual cells.  By mining the dynamic  changes in gene 
expression both intra-  and extracel-lularly, we obtained 
more comprehensive and in-depth insights into  the  
complexity  of Alzheimer’s  disease.   This  knowledge 
will contribute to the development of novel therapeutic 
strate-gies and a better understanding of neuroregulatory 
mechanisms at the  cellular level, ultimately  facilitating 
the  deciphering  of the intricacies of the disease. 

Cell communication analysis 

By utilizing the ” Cell Chat” package Jin et al.(2024)  to 
analyze single- cell transcriptomic  data,  we can gain 
deeper insights into the mechanisms  underlying  the  
interactions  between  cells.    
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 This approach allows us to explore the occurrence and 
progression of Alzheimer’s disease from multiple 
perspectives, potentially providing new clues for the  
development  of innovative treat- ment  strategies.   

 By deciphering the complex  communication networks 
between cells, we can identify key signaling pathways and  
gain  a better understanding  of the  changes  in  cell types, 
functions,  and interactions.   

This,  in turn, provides substantial support for the 
research and treatment of Alzheimer’s disease. 

Mendelian randomization analysis 

By utilizing the ”TwoSampleMR” package Hemani et 
al.(2017) in R, we per- formed Mendelian randomization 
(MR) analysis to examine the causal relationships between 
pairwise variables.   

We  obtained data  from  the  IEU  OpenGWAS  project  
(http://mrcieu.ac.uk) GWAS  database.  In the MR 
analysis, we designated a  set of traits— depression 
(GWAS ID: ieu-a- 1187) , vasculitis (GWAS ID:  finn-b-
L12  VASCULITISNAS) , and moodswings (ukb-b -  
14180)— as exposure variables for Alzheimer ’s disease 
(GWAS ID: ieu-b-5067), which served as the outcome 
variable. We con- ducted  two-sample  MR  analysis  after 
preprocessing  the  data to  ensure  compatibility  of effect  
alleles  and  effect  sizes.    

We generated  odds ratio  (OR) values for this binary 
outcome and performed  tests for heterogeneity and 
multiple outcomes.   

We visualized the results using  scatter plots and 
conducted  sensi- tivity analysis with leave-one-out plots.  
Finally, we displayed the results using visual 
representations. 

RESULTS 

Data collation and transcriptomic difference analysis 
re- sults 

After  visualizing the  distribution  of the merged  
expression matrix derived from transcriptomic data, it 
became evident that there  was  a  substantial batch  effect 
between the two  original datasets used.  Batch  effects 
can lead to cumulative errors and ultimately  affect  
subsequent gene  expression  analysis  and in- 
terpretation.   

To address this issue, we performed batch correc- tion 
and normalization procedures (Figure  1a) to ensure that 
the gene expression data are more reliable and 
comparable. 

 

Next, we took the obtained gene data and performed a 
union operation  with  232  autophagy-related  genes  
provided by  the Autophagy    Database     
(http://www.autophagy.lu/index.html) .  

 

We  conducted  differential  analysis  and identified  36  
differen- tially expressed autophagy-related genes, 
including 21 upregu- lated genes and 15 downregulated 
genes (with a log-fold change threshold  of 0 .4  and  a  
p-value  cutoff of 0 . 05) . We  visual- ized the 
differentially expressed autophagy-related genes using a 
volcano plot  ( Figure   1b).    

and  displayed  the  changes in up- and  downregulated  
autophagy-related  genes using  a heatmap (Figure   1c) 
. Among  the   36  differentially  expressed  genes, the 
top five upregulated autophagy-related genes were 
ITGA6, HDAC1, LAMP2, BAG3, and KIF5B , while 
the top five down- regulated ones were RAB1A , 
CAPNS1 , CX3CL1 , HSP90AB1 , and  ATG10   (Figure  
1d) .      

Therefore,  it  can  be  inferred  that Alzheimer ’s  disease  
alters  the  expression  levels  of  relevant autophagy-
related genes. 

For the single-cell datasets GSE5281  and  GSE138260  
(in- cluding  samples  from  healthy   individuals  and  
Alzheimer’s disease  patients),  we  selected  four  single-
cell   data  samples (GSM5348375,  GSM5348374,  
GSM5348377,  GSM4403286) labeled  as  HC1,   AD1,   
HC2,   and  AD2,  respectively.  

Figure 1: 
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 (a)   Distribution   of  transcriptome    data   from  
GSE5281  and  GSE138260  before  and  after  batch  
effect  re-  moval.  (b)  Volcano plot of differentially 
expressed autophagy  genes (p  ¡ 0 .05 , logFC thresholds 
for upregulated and downreg-  ulated genes set at 0 .4 and 
-0.4 , respectively) .  (c) Heatmap of differentially 
expressed autophagy genes.  (d) Boxplots  show-  ing the 
top 5 upregulated and top 5 downregulated autophagy  
genes. 

We compared the total RNA count (nCount RNA), the 
number of RNA  features  (nFeature  RNA) ,  the  
percentage  of mitochon- drial  genes  (pMT),  and  the  
percentage  of hemoglobin  genes (pHB) among these 
groups using violin plots (Figure 2a) .  Sim- ilar to the 
previous analysis, we observed a noticeable batchef- fect. 
To address this, we applied the ”LogNormalize” method 
to perform a logarithmic transformation of the raw data, 
achieving standardization  and  comparability between  
different  samples. We then visualized the processed 
single-cell data using PCA to effectively  correct the data  
(Figure 2b).   The  elbow plot indi- cated that the optimal 
number  of principal  components  (PCs) was  15  (Figure 
2c) .   Based on the relevant parameters,  we vi- sualized 
the reduced-dimensional  single-cell  dataset in t-SNE 
space  and identified  31  clusters  (Figure 2d) .   We  
further  dis-  played the expression patterns of feature 
genes in different cell clusters using a bubble plot  (Figure 
2e) and performed enrich- ment analysis for different cell 
clusters (Figure 2f) . The annota- tion resulted in six major 
cell types: T cells, B cells, endothelial cells, fibroblasts, 
myeloid cells, and epithelial cells. 

Figure 2:   

 

 

(a)  Violin  plots  comparing  the  data  distribution of 4  
single-cell  samples  in  the  dimensions  of nCount  RNA, 
nFeature RNA, pMT, and pHB. (b) Overall data 
distribution of the 4  single-cell  samples  after PCA 
dimensionality reduction. (c) Elbow curve  showing the  
selection of the optimal number of principal components 
(PCs) .  (d)  Visualization of the single-  cell dataset in t-
SNE space after dimensionality reduction.  (e) Bubble 
plot showing the expression of feature genes in different 
clusters of the single-cell dataset.  (f) Visualization of 
different  clusters in the t-SNE space of the single-cell 
dataset after man- ualannotation . 

Results of multi-omics analysis of infiltration degree 
of im- mune cells 

The   analysis   of   differentially   expressed   genesis   an 
important  data   basis   for   immune    infiltration   
analysis. We    further   con-   ducted   immune    
infiltration    analysis based  on  this  to  identify  changes  
in  immune  cell  types under     the    regulation     of    
differ-    entially     expressed autophagy genes  (Figure  
3a).  This helps us gain  a  deeper understanding     of    
their    potential     roles     in     disease development    
and   immune   response.    We    labeled   the experimen-   
tal   group   as   ”high”   (high-risk   group   for 
Alzheimer’s  disease) and the control group as ”low”  
(low- risk group for Alzheimer ’s disease) (Figure 3b) . 

Through   immune   infiltration   analysis,    we   identified  
path-  ways    with    significant    differences    in    
infiltration  levels:      Ossenkoppele et al.(2015) CD4+ T 
cells that have not undergone antigen  stimulation, dif- 
ferentiation, or functional maturation:  the  decrease in 
CD4+ T cells that have not undergone  antigen  
stimulation may reflect an  immune  system imbalance 
Taams et al.(2002). This   could be   due to   cer-  tain   
issues   in  the  immune  system’s response to antigen 
stimu- lation or abnormalities  in maintaining immune 
balance,  which affects  the  body’s  ability   to   respond   
to   potential   pathogens   or   abnormal  proteins.      
Poncet et al. (2011)   Activated   CD4+   memory   T   
cells:     the  activation  of  CD4+  T   cells   suggests  that  
the  immune  system  is trying  to  respond  to  potential  
inflammation  or  infection  Swain et al.(2000).  This  
partly  reflects  the  immune   system’s  reaction to 
problems in the nervous  system.   Mahmoudi et al. (20-
14) T cell  co  -regulatory   proteins:      the   presence    
of   these   proteins  indicates that the immune  system is 
attempting to regulate  its own activity or play  a role in 
mitigat- ing inflammatory  responses  Jones et al.(2020) .    
Dohler et al. (2014)  Both  activated  and  unac-  tivated 
NK  cells:  an increase in the number of NK cells in both 
states  may  indicate  that  the  immune   system  is  
responding  to  pathological   reactions   related   to   
Alzheimer’s   disease,  such    as   inflammatory   reactions    
or   the    clearance    of  abnormal  proteins  Chang et 
al.(2003) .  Yilmazer-Hanke et al.(1999) Resting  dendritic   
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 cells:   the activity    state    of    dendritic   cells    directly    
affects    the  information   transmission   and    synaptic   
connections    of neurons.   

Their decreased infiltration level may affect  neural  signal  
transmission,  exacerbating  cognitive  dys -   function    in   
Alzheimer ’s   disease   patients    Fernandez et al.(1999) . 
Li et al. (2015) Neutrophils: as the main granulocytes in 
the immune  system, the  significant  differences in their 
presence may indicate the presence  of patho-  logical   
processes   such  as  inflammation reactions or infections 
in Alzheimer ’s disease patients Teillet-Thiebaud et 
al.(1985). 

Comprehensive    analysis    of   immune    infiltration   
helps reveal  the   key  role   of  the  immune   system   in  
biological processes and is  of significant  importance  for  
understanding disease   mech-  anisms   and   discovering  
therapeutic  targets. Subsequently,     to     further      
explore      immune     pathway information   in  
Alzheimer’s  disease  patients,  we  visualized the  
proportions  of  different  cell  types  using  the  previously 
organized  single-cell  transcriptomics  data   (Figure   3c).    

We observed   an   increase   in   myeloid    cell   pro-   
portions    in Alzheimer’s  disease   samples  compared  to  
healthy  samples and  visualized  this  through   a  heat   
map   (Figure  3d).  

 This allows  us  to  understand  the   specific   distribution   
of  cells with  high  or  low  immune  levels  and  to  
discover  that  cells with high immune level scores are 
mostly myeloid cells. 

Figure 3: 

 

     

(a)   Visualization  of  the  proportion  of immune cells  in  
each  sample.   (b)  Boxplots  showing multiple  groups of 
high  and low-risk categories, where  a higher number indi- 
cates  greater  significance.    

 (c) Bar plots displaying the differ- ential proportions of 
different cell types between healthy con- trol (HC) and 
Alzheimer’s disease (AD) samples in single-cell omics  
data.   (d) Visualization of the distribution of cells with 
high  and low  immune  levels based  on  scoring  in  
single-cell omics data. 

Enrichment results by multiple methods and 
pathways 

To  gain  a  more  comprehensive  understanding  of the  
role and   regulatory    mechanisms   of   these   genes   
in   cellular processes   and   biological   functions,    we   
performed    gene enrichment   pathway   analysis   based   
on   the    differentially expressed   genes    obtained   
from   the   previous   differential analysis.       

This   analysis   aimed   to   reveal   the   metabolic 
pathways,  signaling  pathways,  and  other  related  
biological processes     involved     in    the     differentially     
ex-    pressed autophagy genes.   

This enables a deeper understanding of the important 
roles these genes play in disease  development and 
physiological   regulation.    

After   conducting   comprehensive gene  ontology  
(GO)  enrichment  analysis  incorporating  cellu -   lar    
component    (CC),    biological    process    (BP),    and 
molecular  function   (MF)   (Figure   4a ,   b ,   c,   d) ,   
the   most prominent  path-  ways   identified  included  
macroautophagy, regulation   of  neural  growth,   
positive   regulation   of   cell, regulation    of    the    
nervous    system,    and   regulation    of autophagy. 

Figure 4: 
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 (a) Bubble plot showing GO enrichment. (b) Bar plot 
showing significantly enriched GO terms (p¡0.05). (c) 
Cluster plot depicting the clustering of enriched GO 
terms. (d) Circle plot illustrating the enriched GO terms. 

Macroautophagy is involved in clearing abnormal protein 
ag  -  gregates  and  damaged  organelles  within  nerve   
cells  and  helps  maintain  the  stability  of the  intracellular  
environment  Wong et al.(2011).  

Re- search  has  shown  that  the  expression  and  activity  
of  the   au-  tophagy  pathway  in  the  brain  are   abnormal  
in  Alzheimer’s   dis-   ease      patients,      leading      to      
protein  aggregation    and    disruption  of organelle  
function,  thereby  exacerbating  the  progression   of 
Alzheimer’s  disease   Ma et al.(2010).   

On  the   other  hand,  the  regulation   of  neural   growth   
and  positive regulation of cell are also associated with 
Alzheimer ’s  disease   Fernandez -Verdecia et al.(2009) .    

In   the   nervous   system,   neuroge-   nesis   and  synapse    
formation    require    precise    regulation    and    co-  
ordination of both intracellular and extracellular 
environments, with  positive  regulation  of  cells  playing   
a  critical  role  in  this  process.      

When   the   positive   regulation   of   cells   is  imbalanced,  
neurogenesis   and   synapse   formation   may   be  affected,   
thereby   exacerbating   the   abnormal   state   of  the  
nervous system. 

Figure 5:   

 

 

(a )   Cluster  plot  depicting  KEGG enrichment (p¡0 . 05) 
.  (b)  Circle plot illustrating enriched KEGG pathways. (c) 
Bubble plot showing GSEA enrichment (p¡0 .05) .  (d) 
Ridge plot illustrating  GSEA enrichment.   (e)  Top  8  
enriched path- ways displayed in GSEA. 

Furthermore,   after   performing    KEGG   enrichment    
and GSEA  enrichment    analyses,    the  results   indicate   
that  the autophagy   pathway   is    also   enriched   in   
various    cancer phenotypes  (Figure 5a ,  b ,  c,   d,  e) .      

This  further  highlights the important role  of autophagy   
in   neurodegenerative   diseases    and   cancer, providing   
insights     into    the    complex    regulation     of 
autophagy   in   disease   development   and   expanding   
the scope   of   autophagy   research.    

This    shared   regulatory mechanism  may  provide  new  
research  directions  at  the intersection  of these  two  
diseases  and  empha-  sizes  the universal importance of 
autophagy in cellular survival  and metabolic regulation. 

Protein interaction network and gene screening of 
network center node 

Based on the gene pathway enrichment analysis,  we pro 
- ceeded to construct a protein-protein interaction (PPI) 

Figure 6: 

 

 (a) PPI network.  (b) Top  10 hub genes based on MNC 
algorithm. 

network   and   performed   hub   gene    screening.      By 
analyzing the protein- protein interaction network  
(Figure 6a),  

we can explore the in- teraction relationships between 
genes more  deeply  and identify ”hub”  genes  that  play   
a key  role  in  the  entire  biological  net- work  (Figure  
6b) .  

These  ”hub”   genes  often  interact  with  mul-  tiple   
other genes  and  have  a  significant  impact  on  the  
stability  and function of the entire network. 

Therefore, identifying these critical protein-protein 
interaction networks and hub genes will help  us  better  
understand  the  patterns  of interaction 
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Table 1: Top 10 hub genes and their changes based on the MNC algorithm. 

 

Gene Symbol Change Type 

CXCR4 UP 

GAPDH DOWN 

RHEB DOWN 

EGFR UP 

ITGB1 UP 

IKBKB UP 

IFNG DOWN 

HDAC1 UP 

CDKN2A UP 

HSP90AB1 DOWN 

 

Note: The Change type corresponding to each gene is derived from the previous differential analysis results. 

between  genes  and  their  biological  functions,  
providing further  insights  and  guidance  for  further  
bioinformatics analysis. 

In this study, we used the multiple neighborhood-based  
clus-  tering  (MNC)  algorithm  to   screen  the  top   10  
hub  genes  in  the PPI network (Table  1) .  These  hub  
genes  are  CXCR4 , GAPDH, RHEB,  EGFR,  ITGB1 ,   
IKBKB,  IFNG, HDAC1 ,   CDKN2A , and HSP90AB1 
. 

LASSO regression modelfeature geneselection 
results 

After  constructing  the  PPI  network  and  screening  for 
hub genes, a crucial step we took was to perform LASSO 
regression  model  to  select  key  genes.  By  using  
machine learning methods, we were able to further 
narrow down the scope  of  analysis   and  identify  the   
most  critical  genes, deepening  our  understanding  of  
the   molecular   changes caused   by   interventions    in   
Alzheimer’s   disease.     

The application   of  LASSO   regression   model   will   
help   us identify  genes  that  have   a  significant  impact  
on  disease status or treatment interventions, laying a solid 
foundation for further bioinformatics analysis and clinical 
translational research. 

During    the    training    process    of   the    model,   the 
complexity   of   the   model   decreases   gradually    

on   the training set as the regular- ization parameter 
increases, and the performance metric values become  
worse  (Figure  7a). On the validation  set, the perfor- 
mance metric reaches its optimum around a certain 
regulariza- tion parameter value and  then   gradually   
deteriorates   as  the  reg-  ularization parameter    
increases.    This    optimal    regularization   pa- rameter 
value reflects the best performance of the model on the 
validation set. By observing the cross-validation plot, it 
can be seen that the optimal number of genes in the model 
is  20   (Fig-  ure  7b) ,   and  the  model ’s  coefficients  
for   19 relevant  genes  along with  an  intercept  term  are  
obtained (Table   2).     Furthermore,   a   ROC   curve   is   
plotted   to evaluate  the  performance  of the  model  
(Figure  7c) .   The calculated  AUC  value  is  0.970 , 
indicating  that  the  built model can effectively distinguish 
between the healthy and Alzheimer’s disease categories in 
this binary classification task, with a high accuracy rate  
and recall. 

Venn and Nomogram mapping of key genes 

After    a     series    of    gene    screening     operations,    
we  ultimately take  the  intersection  of the  screening  
results  from  the  various parts mentioned  above to  
obtain  the  final  set  of  selected  genes.  The  purpose  
of this  step  is  to  integrate  the  results from different 
screening methods, retain genes that are  consistent  and  
impor-  tant,   and   further   highlight   the  key  roles  of 
these  genes  in  bi- ological processes.  In this  study,  we   
set   the   original    common  gene   set   (Common   gene) 
,   
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Table 2 : Coefficients and intercept for the 19 key genes in the Lasso constructed model 

Gene Coef 

(Intercept) -8.482628529 

RAB1A -0.203382697 

KLHL24 0.27250216 

BAG3 0.430830843 

EEF2 0.291031202 

CAPNS1 -0.536966269 

RAF1 1.089670214 

VAMP7 -1.144675163 

CAPN2 0.419745604 

SESN2 0.130015567 

RB1 1.186959801 

BAX -0.745967665 

CX3CL1 -0.083016706 

CAMKK2 -0.106564441 

CXCR4 0.443820169 

ATG10 -0.368013442 

TNFSF10 0.128330603 

EIF4EBP1 3.08E-02 

IFNG -0.157499347 

CDKN2A 0.108990092 

Note: (Intercept) represents the intercept term. 

 Figure 7:   

 

 

(a)  Regularized pathway diagram.     (b) glmnet cross-
validation plot.  (c) ROC curve. 

autophagy gene set  (autophagy) ,  sig-  nificantly  
differentially  expressed  gene  set  (Difference),  Lasso  
modeling    key   gene  set  (Lasso),   and  PPI  key  hub   
gene  set (Hub)  as the 5 parts  for intersection (Figure 
8a) .  We identified CDKN2A,  CXCR4, and  IFNG  as  
strong  candidate key  genes that were expressed  in  all  
5  modules  (Figure   8e) .     These  genes  were  used   
as  variables  for  logistic  regression  analysis,   and  a 
Nomogram  column chart was  constructed to build  a 
model  for assessing  the degree of autophagy 
deterioration in Alzheimer’s disease  (Figure   8b).   The   
ROC   curve   of  the   model   was   plotted  (Figure  
8c),  and  the  AUC  value  of the  model  was  found  to  
be 0 . 753 ,  indicating a good model performance.  
Furthermore,  the   calibration   curve   was   used   to    
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 further   evaluate   and  observe the performance of the 
model,  and it was  found that  the  calibrated  curve  had   
a  good  correlation  with  the  ideal  straight line  (Fig- 
ure 8d), once again demonstrating the good performance 
of the established  multi-factor logistic regression model  
in  assessing the  degree  of autophagy  deterioration  in 
Alzheimer’s  disease.   

CDKN2A,   CXCR4,  and  IFNG  genes can  serve  as 
reliable  in- dicators for evaluating the degree of 
autophagy deterioration in Alzheimer’s disease. 

Figure 8:  

 

  

(a) Gene Venn diagram under multiple screening 
methods.  (b) Nomogram plot of Alzheimer’s disease risk 
col- umn.    (c)  Model calibration curve test plot.    (d)  
ROC curve model test.   (e) Box plot of three strong 
candidate key genes CDKN2A, CXCR4, and IFNG.  

Location of key autophagy genes and results of 
pseudo - time series analysis 

After completing the screening of key  autophagy genes 
in Alzheimer ’ s  disease  using  transcriptomic  data,  we  
used single- cell genomics data to localize the expression 
of the strong can- didate key autophagy genes CDKN2A, 
CXCR4, and IFNG in different types of cells (Figure 9a, 
b).   After performing dis- persion analysis and selection 
on the single -cell genomics gene data and reordering 
them (Figure 9c),  

we  generated  a  cellu-  lar  developmental  time  series  
plot (Figure 9d) and observed the expression changes of 
the key autophagy   genes    CDKN2A   and   CXCR4, 

 

 

  which   had relatively high  expression  levels,  dur-  
ing the  cell growth and  development  cycle  (Figure  
9e).       

We  found  that  the expression  level  of the  CDKN2A  
gene  increased  initially and  then  decreased  during  
the  cell  growth   and  devel- opment cycle, while the 
CXCR4 gene showed an increasing trend.   

 Through pseudo-temporal analysis based on single- 
cell genomics,  

we can better understand the developmental trajec- tory 
of target genes in different cell types   and the dynamic  
changes  in  cell  states.  This  further  reveals  the 
dynamic changes of key autophagy genes in the process 
of Alzheimer’s disease. 

Figure 9:   

 

 

(a)  Violin plots showing the expression levels of 
CDKN2A, CXCR4 , and IFNG genes in different cell 
types.   

(b) Heatmap illustrating the expression distribution of 
CDKN2A, CXCR4 , and IFNG genes in different cell 
types in t- SNE space.  

(c) Scatter plot of genes after discrete analysis and 
filtering of single-cellomics data followed by 
reordering.   

(d)  Single-cell omics  cell developmental timeline plot.     

(e )   Heatmap   show- ing the expression changes of 
key autophagy genes CDKN2A, CXCR4 , and IFNG 
in the cell growth and development cycle in Alzheimer’s 
disease. 
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 Cell communication analysis results 

After  localizing  and pseudo-temporal  analysis  of key  au- 
tophagy  genes,  it was  found  that  the  CDKN2A,  
CXCR4, and   IFNG   genes  have   different   expression  
patterns   in different types of cells   (Figure   9a).     

 It   was   found  that the   CDKN2A   and CXCR4 genes 
are highly expressed in myeloid cells compared to other 
cells, while the IFNG gene is mainly expressed in T cells 
with lower expression levels.  

Taking the CDKN2A gene as an example, we divided the 
myeloid  cell  cluster  data  into  two  groups  based  on  
the differential expression of the CDKN2A gene (Figure  
10a).  

Subsequently, we observed the communi- cation networks 
and  outgoing/incoming   signaling  patterns  be-  tween  
the cells in these groups (Figure   10b, c)  and plotted a 
bubble chart  to  display  the  signaling  pathway  of  
different  cell groups (Figure  11a). 

Figure 10:  

 

  

(a)  Visualization depicting the overall communi- cation 
network between different grouped cells. (b) Heatmap 
displaying the outgoing signaling patterns between 
different grouped cells.  (c) Heatmap illustrating    both 
the incoming and outgoing signaling patterns between 
different grouped cells. 

The NRG signaling pathway network was found to have a 
high occurrence frequency in the entirecell    
communication   network. 

By    visualizing    theinteractions  be-  tween  different  
cell  groups  on  theNRG signaling pathway (Figure  11b), 

 

Figure 11:  

 

(a) Bubble plot demonstrating the signaling path- way 
diagram corresponding to   different grouped cells.     

 (b) Network of NRG signaling pathways.   

 (c)    Visualization of NRG signaling pathways with Mast 
cells   and T cells as signal- receiving cell clusters under 
different groups. 

it was observed that there is   a   close   connection   be-   
tween   the   Mast   cell   and Endothelial cell groups in 
the NRG sig - naling pathway.   

It is speculated that the changesin CDKN2A autophagy 
gene expression   are   related   to   the   reciprocal   inter-   
action between the NRG signaling pathway and the Mast 
cell cell group and B cells.  

The analysis methods for the other two genes are 
consistent with this. 

Mendelian random sampling analysis results 

To  explore  the  association  between  different  exposure 
fac- tors  and  the  onset  of Alzheimer’s  disease  and  
gain a   deeper  understanding   of  possible   
pathophysiological mechanisms,    we    adopted     
Mendelian     randomization analysis   using    depression  
and  vascular  inflammation  as exposure factors and 
Alzheimer’s disease  as  the  outcome variable.        

Mendelian   randomization  analysis  allows  for more 
accurate assessment of causal relation- ships between 
influencing  factors  and  outcome  variables,  thus  
assisting in   the   formulation   of  clinical   decisions.        

The   appli- cation   of this  method  is  expected  to  
provide  important scien-  tific   evidence  for  more   
effective  prevention   and intervention of Alzheimer’s 
disease. 
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 After conducting sensitivity analysis (Figure   12b), we 
found that the central values for vascular inflammation 
and mood fluc- tuations   were   greater   than   0, 
indicating    a more          reliable     re-     lationship     
between     vascular inflammation   and mood fluctua- 
tions.  Further  analysis was conducted on the exposure  
factors, and  a  forest  plot was     generated     to     reflect     
the     increased     risk    of Alzheimer ’s disease with 
worsening mood fluctuations un -  der  the  IVW   
(Inverse  Variance  Weighted)   calculation method   
(while    the   unreliable   nature    of   the   results generated 
by depres- sion can be seen from the leave-one-of the  
results,  balances  potential  random  errors  and  biases 
through   random   grouping,    ensuring   that   the    
differences between the ex- perimental and control 
groups are caused by the  treatment  vari-   able  rather  
than  other  factors.   It   also enhances the effectiveness 
of statistical inference, establishes causal relationships 
between exposure factors and outcome variables, and 
conducts statistical hypothesis testing Carter et al. (2023). 

Figure 12:  

 

    

 (a)   Scatter  plots   depicting   depression,   vas- culitis,  
and  emotional  fluctuations  as  exposure  factors,with 
Alzheimer’s disease  as the outcome variable.   (b) Leave-
one- out plots for each exposure factor after 
heterogeneity and multi- effectiveness  testing.  (c) Forest 
plot  showing depression, vas- culitis,  and  emotional  
fluctuations as  exposure  factors,  with Alzheimer’s  
disease  as the outcome variable.   (d) Funnel plot 
displaying depression, vasculitis, and emotional 
fluctuations as exposure factors, with Alzheimer ’s disease 
as the outcome variable. 

DISCUSSIONS 

For the final selection of genes: 

The relationship between upregulation of the CDKN2A 
gene and  Alzheimer’s  disease  deserves  further  
discussion. Genes regulated by CDKN2A play important 
roles in cell    cycle reg- ulation and apoptosis, and have 
also been found  to be closely associated  with the  
autophagy pathway  Budina-Kolomets et al.(2013).  

 In Alzheimer’s disease,the aggregation of abnormal 
proteins and disrupted cel- lular metabolism  are  
important components of the pathogenic mechanism,  
and the upregulation  of the  CDKN2A  gene may lead 
to out plot,  and the lower sig- nificance of the results 
related  to vascular inflammation can be observed  from 
the box plot) (Figure    12a ,  c) .   

  Additionally,  the  funnel  plot  indicates  that  the   
Mendelian  randomization  analysis  satisfies  the  
requirements for Mendel’s  second  law  of random- 
ization  (Figure  12d) . 

Mendelian  randomization  analysis  can  effectively  help  
con- trol confounding factors in experiments and 
minimize the ran -  dom  differences  between  
experimental  and  control  groups.  

This approach reduces  the  impact  of confounding  
factors  on exper-    imental     results,     improves    the     
reliability     and comparability dysregulation of the 
autophagy pathway, thereby affect- ing the clearance of 
abnormal proteins and ultimately exacer-  bating 
neuronal dysfunction and death. 

Furthermore,    CXCR4,    as    a    chemokine    receptor,    
is involved   in   neuronal    survival,    migration,    and    
synapse formation  in  the nervous  system, and is also 
associated with the autophagy path- way   Hu et al.(2018).  

Its  upregulation  may   affect neuronal   survival   or 
worsen  the  disease  by  influencing  the stability  of 
neural  cir- cuits. 

IFNG, as an  important  immune  regulatory  factor,  
plays  a key role in inflammation response  and immune 
function Deng et al.(2023) .  Pre- vious studies have 
shown that abnormal activation  of inflamma- tion and 
the immune system is closely related to the pathogenic  
mechanisms   of  Alzheimer’s   disease   Aisen et al.(1997).    

The downregulation of IFNG   may lead to   changes in   
specific immune   functions   in   patients, affecting   the   
inflammatory response of brain tissue and the ability to 
clear abnormal proteins, thereby     exacerbating    neu-    
ronaldamage     and neurodegeneration. 
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 The Alzheimer’s disease key genes selected through tran -   
scriptomics   play   critical   roles   in the   regulation   of 
the autophagy   pathway, neuronal    metabolism, and    
immune function.     Addi-  tionally,   the   complementary   
information provided  by   single-  cell  transcriptomics  
allows  for  further exploration  of therela- tionship 
between Alzheimer ’s disease and  the  autophagy  path-  
way.     This  may  help  reveal  the pathogenic    
mechanisms    of   the   disease    and    provide    a 
theoretical   basis   for   the   development   of  new  
therapeutic strategies. 

Afterwards, we conducted Mendelian randomization  
analy - sis  and  found a reliable  positive  correlation 
between mood fluc- tuations  and Alzheimer’s  disease.   
We will  discuss this from multiple perspectives. 

Ossenkoppele et al. (2015) Neurobiological 
perspective:   Recent research suggests that mood 
fluctuations, especially persistent negative emotions, 
are   closely   related    to   changes    in   brain    structure    
and function Yang et al. (2010).   Mood fluctuations may lead to 

changes in hormone levels, such as increased cortisol and 

adrenaline levels, which can have negative effects on neurons, 

synaptic transmission, and neural networks Hammar et al. 

(1995).   

This impact may be related   to    protein    aggrega-   tion   
and   neuronal   damage associated with Alzheimer’s 
disease. Poncet et al.(2011)   Inflammation    and   
immune    perspective:      Mood fluctua-  tions,  
particularly   those   caused  by   stress,   can lead  to  
inflam-  matory   responses  and  activation  of  the 
immune  system  Pereira et al.(2021). Chronic  
inflammation  and immune system  dysregulation have 
been  found  to be  associated with  the   onset   and  
progression   of  Alzheimer ’s  disease Li et al.(2023) .   

This inflammatory response may af- fect  the  health 
of   brain    neurons    and    play    a    crucial    role    
in    the pathophysiology of Alzheimer’s disease. 

Mahmoudi et al. (2014) Genetic and  environmental  
interaction  perspective: Some   studies    suggest   that   an   
individual’s   genotype, particularly  genes related  to  stress  
coping,  may  interact with mood  fluctuations and the risk 
of Alzheimer ’s disease Corbo et al.(2007) .     

Environmental  stress  and   mood   fluctuations  may 
exacerbate   genetic   susceptibility,  thereby   increasing  
the risk of Alzheimer ’s disease Stuart et al.(2017). 

Dohler et al. (2014) Clinical  and  epidemiological  
perspective:    Large- scale epidemiological  studies  have  
shown  that  individuals exposed to   long-term   negative   
emotions   may  be  more susceptible   to  Alzheimer ’s    

 

 

disease Chen et al. (2017). These  findings provide 
important ref- erences for further clinical practice and    
intervention    measures.    For     example,     emotion 
management  and  stress relief may be- come key 
strategies for preventing Alzheimer’s disease. 

Based on the reviewed literature, it can be concluded that 
the     relationship     between     mood     fluctuations      
and Alzheimer’s   dis-  ease  involves  multiple  aspects,   
such  as neurobiology,    inflamma-    tion    and    immune   
response, genetic   and    environmental   interac-   tion,   
etc.    Deeply examining  this  relationship  from  
different  an-  gles   can help us better understand  the 
underlying mechanisms and provide a theoretical basis 
for the prevention and treatment of  Alzheimer’s   
disease,   as   well   as   provide   valuable insights for 
related research and clinical practice. 

Autophagy  is  a  process  that  breaks   down  and  clears 
damaged  or  aging  organelles  and  proteins  to  maintain 
cellular homeosta-  sis.     In  recent  years,  the  
importance of autophagy  in  various diseases has 
attracted widespread attention   and  plays   a   critical  
role   in   neurodegenerative diseases and cancer Ulamek-
Koziol et al.(2013) . 

In neurodegenerative diseases, abnormal regulation of 
the  au- tophagy  pathway  is  closely  associated  with  
neuronal  degenera-  tion  and  death.  Many  studies  
have  shown  that  imbalanced  regu-  lation   of  
autophagy   can   lead  to  the  occurrence and 
development of neurodegenerative  diseases, including  
Alzheimer’s   disease,  Parkinson ’s  disease,   and  
Huntington ’s    disease    Schmukler et al.(2020) .     
Therefore,  targeting    the  regulation   of  the   autophagy   
pathway   may   become   a  potential strategy for the 
treatment of these diseases. 

Further      validation      from      different      experimental 
perspectives  is  required  to  verify  the  above  
conclusions. Due to various  lim-  itations  imposed by  
external  factors, we are not able to conduct more  in-
depth  experiments  at this  time.    In   summary,  the  
au-  tophagy  pathway  holds great  promise   in  the   
treatment   of  neu-  rodegenerative diseases   and   
cancer,   and   personalized   and   effec-   tive targeted 
drugs are expected to be developed.  Furthermore, 
modulating autophagy could help overcome drug 
resistance and  improve   treatment   outcomes.     
Therefore,   in-depth research  on  the  mechanism  of  
autophagy  can  provide  a theoretical   basis   for   the   
prevention   and   treatment   of related     diseases     and    
important    guidance     for     the development  and  
clinical  application  of new-  generation therapeutic 
drugs. 
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