
 

 
 

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 6 

ORIGINAL ARTICLE 

Human Biology (Nov-Dec)2024, Vol 94, Issue 6, pp:899-913 Copyright ©2024, Human Biology, visit humbiol.org 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External Validation of a Prognostic Model for One-Year Survival After 

Fragility Hip Fracture: A Retrospective Cohort Study 

                                                                                 Hairui Fu1*, Feixiong Li1, Bin Liang1, Dou Wu2, Xuan Zhang3 

ABSTRACT 

Purpose: To validate a prognostic model of mortality among patients with fragility hip fractures.  

Methods: This was a retrospective cohort study. Patients with fragility hip fractures were consecutively admitted to the 
orthopaedics department from January 2016 to October 31, 2021. We evaluated the performance of a survival after 
fragility hip fracture (SFHF) model (including the full model and the simplified model) in the following ways: (1) 
Discrimination. We present the concordance (c) index of the model, including Harrell's c-index and Uno's c-value. 
Overall performance was measured with Nagelkerke R2 values. (2) Calibration. The calibration plot method was used to 
evaluate the calibration of the model. (3) Clinical value. Decision curve analysis (DCA) was used to determine whether 
the model had clinical value in the validation population.  

Results: A total of 877 (out of 1132) eligible patients with fragility hip fractures (≥50 years) were included in this study. 
Among these patients, 47 patients were lost to follow-up. Among the patients who were successfully followed up, 87 
died within 1 year after fracture. After simple imputation was applied to address missing values, the final effective sample 
size was 93 patients. The 1-year mortality rate after fracture was 10.6%. The Harrell’s c-index values of the full and simple 
SFHF models were 0.764 (standard error, 0.024) and 0.763 (0.024), respectively. Uno’s c-values were 0.765 (0.024) and 
0.763 (0.024), respectively. The Nagelkerke R2 values were 0.144 and 0.144, respectively. The calibration plot revealed 
good calibration between the predicted and actual values of the model. DCA revealed that the model was clinically useful 
within a risk of death threshold range of 0.03-0.38.  

Conclusion: Our study preliminarily confirmed that the SFHF model has good accuracy and generalizability in predicting 
the one-year survival rate of patients with fragility hip fractures and that it has good clinical value. This predictive model 
may be considered for use in clinical practice. 

INTRODUCTION 

Background and Objectives 

For the purpose of scientifically stratifying the 
management of hip fractures in elderly individuals and 
simultaneously identifying high-risk patients to guide joint 
decision-making by doctors and patients about whether to 
operate, we previously developed a prognostic model to 
predict 1-year survival after fragility hip fracture (SFHF) Fu 
et al. (2021). This prognostic Cox proportional hazards 
model was developed on the basis of a retrospective cohort 
study that was conducted at a secondary care hospital in 
China. Among the 735 eligible patients with fragility hip 
fractures who were included in the study, 68 died within 1 
year after fracture. The simplified version of the model 
includes 8 preoperative clinical indicators (age, albumin  

levels, sex, serum creatinine levels, malignancy, 

hypertension, ability to live independently, and 

cardiovascular and cerebrovascular diseases) that can be 

quickly determined within 48 hours after admission; the 

addition of whether to choose surgical treatment 

increases the number of predictor variables to 9. With 

the use of the nomogram derived from this model, a 

weighted score for each variable can be quickly obtained 

after patient admission. On the basis of the total score, 

the 1-year survival rate of the patient following surgery 

(surgery=1) or conservative treatment (surgery=0) can 

be simultaneously predicted before a treatment plan is 

formulated. The model shows good discriminative ability 

(Harrell’s c statistic=0.814 (95% confidence interval (CI) 

0.762–0.865)) and no significant overfitting (c=0.795, 

internal validation by 1000 bootstrap repetitions). 
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  However, if the model is ultimately to be used for 
clinical decision-making, external validation is 
essential Altman et al. (2000), Moons et al. (2009), 
Royston et al. (2013), Ramspek et al. (2020). For this 
purpose, we designed and conducted another retrospective 
cohort study to examine the accuracy and generalizability 
of this model in a relatively related new population 
Ramspek et al. (2020), Justice et al. (1999). 

In recent years, the development of predictive models that 
focus on the 1-year mortality (or 1-year survival) rates of 
fragility hip fracture patients after fracture has not been 
uncommon. The external validation of multiple similar 
models on the same dataset can provide potential model 
users with more information, such as information about 
which model seems to perform better. However, here, we 
did not perform such a validation study for a few reasons. 
1. The purposes and contexts of model development differ, 
and our own developed models are best suited to our own 
local environment. Therefore, we mostly focused on the 
external validation of the performance of our model. This 
is probably the reason why more model validation research 
is conducted by developers themselves. 2. This study was 
specifically designed to validate our own model. Therefore, 
in terms of predictor definitions, outcome definitions, and 
data measurement and collection, the heterogeneity 
between these validation data and our own development 
data is naturally minimal compared with the development 
data of other models. In the presence of such systematic 
biases, results of objective model comparison studies 
cannot be obtained. This is a fact Ramspek et al. (2020), 
Trevisan et al. (2021). 3. A prospective cohort study design 
is more appropriate for a model comparison study, since 
certain predictors can be collected specifically for the target 
model. However, this was a retrospective cohort study, and 
variables such as “poor handgrip strength” (8), “not being 
able to drive” (9), and “difficulty preparing meals” (9) could 
not be collected. As a result, the validation of models 
containing these predictors could not be achieved. 4. 
Because of the different contexts in which similar models 
were developed, some of the predictors in these models are 
not meaningful in certain contexts. For example, “long-
term care residence” Jiang et al. (2005) and “living in an 
institution” van de Ree et al. (2020) are meaningless in most 
areas of China because it is not common for elderly 
individuals to live in nursing facilities. In China, most 
elderly people live alone or with a spouse or children Cui et 
al. (2022), Bao et al. (2022), Nie et al. (2022), Zhang et al. 
(2006). Therefore, it does not make sense to validate such 
a model. According to a reliable survey that was conducted 
in 2018, the vast majority of elderly people in China 
(96.4%) lived with family members, while a small 
percentage lived alone (3.3%) or in nursing homes (0.3%) 
Cui et al. (2022), Center for Healthy Aging and 
Development Studies et al. (2020). Therefore, this study 
validates only our self-developed SFHF model. 

 

 

MATERIALS AND METHODS 

This study followed the 2015 TRIPOD 

recommendations Moons et al. (2015). 

Data Source 

We designed and conducted a single-centre, retrospective 
longitudinal cohort study. We predicted the survival of 
each patient in this cohort via the SFHF model and 
compared it with actual observations to determine 
whether the model is a good tool for predicting 1-year 
survival after fracture in these individuals. When 
necessary, the model was updated to better fit this 
population. This study included all patients with hip 
fractures who were consecutively admitted to the 
Orthopaedics Department of Shanxi Bethune Hospital in 
China from January 1, 2016, to October 31, 2021. Patient 
follow-up was then completed via telephone interviews 
from March 14 to 29, 2022. The preoperative individual 
characteristics of each patient were obtained from the 
patient's medical records. This study was approved by the 
Medical Ethics Committee of Shanxi Bethune Hospital. 
Informed consent was waived by the Medical Ethics 
Committee of Shanxi Bethune Hospital. All the methods 
in this study followed the Declaration of Helsinki. 

Participants 

Shanxi Bethune Hospital is located in Taiyuan, which is 
the capital city of Shanxi Province in Central China. 
Shanxi Bethune Hospital is a comprehensive teaching 
hospital and a tertiary regional referral hospital. As in the 
developmental study, we identified eligible participants 
according to the following criteria: 1. patients ≥ 50 years 
old; 2. patients with low-energy fractures (fractures that 
were caused by a patient falling from a standing height or 
lower), excluding patients with pathological, high-energy 
fractures; periprosthetic fractures after previous hip 
replacement surgery; and reoperation due to failure of 
internal fixation for hip fracture, regardless of whether 
the patient had a primary or secondary fracture; and 3. 
patients with hip fractures, including femoral neck, 
intertrochanteric and subtrochanteric fractures. 

Unlike in the developmental study, eligible patients could 
also have other low-energy fractures, such as wrist 
fractures, femoral neck fractures, or vertebral 
compression fractures, resulting from falls that lead to 
hip fractures. For the same patient who was hospitalized 
twice for hip fractures on different sides during the study 
period, the most recent hospitalization data were 
selected. 

Surgical treatment was considered for all patients after 
admission, and routine preoperative preparations were 
completed as soon as possible. If a patient suffered from 
obvious medical diseases that affected eligibility to 
undergo surgical treatment, surgery was postponed, 
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 and the relevant departments were requested to assist with 
diagnosis and treatment. Surgical treatment was 
administered when a patient's overall condition was 
stable. In the developmental study, participants 
underwent osteodistraction immediately after 
hospitalization unless it was determined that surgery 
would be performed soon. In this study population, 
osteodistraction was not performed unless it was clear 
that a patient could not undergo surgery in the short term 
or that surgery was not being considered. 

Similar to the developmental study, different surgical 
approaches were implemented depending on the fracture 
site. For femoral neck fractures, cannulated screw fixation 
and total hip or hemihip replacement were selected 
according to different patient age ranges. Intramedullary 
nails were used in the surgical treatment of 
intertrochanteric and subtrochanteric fractures. 

All eligible patients were included in this study. For 
individuals with missing data, we used advanced statistical 
methods to impute to avoid serious bias due to simple 
deletion. 

Outcome 

Similar to the developmental study, our event of interest 
was all-cause mortality within 1 year (365 days) after 
fracture. We first collected the demographic 
characteristics and preoperative clinical indicators of each 
patient, and follow-up was conducted by telephone 
interviews. 

Similar to the developmental study, we also developed an 
interview strategy to increase the interview rate and 
reduce loss to follow-up Fu et al. (2021). 

Predictors 

Similar to the developmental study, we collected 24 
individual patient indicators. Except for whether surgery 
was performed, the remaining 23 variables were all 
preoperative characteristics. These variables included 
demographic characteristics, such as age, sex and medical 
insurance; fracture-related characteristics, such as fracture 
site, fracture type, days from fracture to hospitalization, 
days from hospitalization to surgery, and length of stay 
(LOS); medical history information, such as ability to live 
independently (ALI), lung disease (LD), cardiovascular 
and cerebrovascular disease (CCD), kidney disease (KD), 
malignancy (MAL), hypertension (HYP), diabetes, and 
mean arterial pressure (MAP); laboratory-related factors, 
such as partial pressure of oxygen (PaO2), haemoglobin 
(Hb) , serum creatinine (SC), fasting blood sugar (BS), 
albumin (ALB), and total protein (TP) levels; and 
treatment-related factors, such as osteodistraction and 
surgery (SUR). 

The definition and measurement time of each indicator 
can be found in the developmental study Fu et al. (2021). 

 

Here, we describe only the variables that differ from 
those that were used in developmental studies. In this 
study, we redefined the CCD characteristic. In the 
developmental study, CCD-positive patients included 
patients with previous diagnoses of myocardial 
infarction, cerebral infarction, cerebral haemorrhage, or 
extremity thrombosis or patients who were previously 
undiagnosed but were identified as having an infarct or 
thrombosis during the admission examination. In this 
study, to better capture patients at high risk of 
cardiovascular and cerebrovascular diseases, we also 
considered patients with coronary heart disease who were 
not diagnosed with myocardial infarction as being 
positive for CCD. Regarding LD, LD-positive patients 
included patients with previously diagnosed chronic 
bronchitis and chronic obstructive pulmonary disease at 
baseline. 

Notably, because the prefracture ALI was included in the 
telephone interview, when the description of a patient’s 
ALI at the time of medical history collection was 
different from the description in the telephone interview, 
the results of the telephone interview were used. 

To ensure the reliability of data collection, we checked 
the original data again when necessary to avoid human 
error or to find a reasonable explanation for unreliable 
data. For example, we encountered extreme values when 
data cleaning (such as extremely high or low BS levels) or 
details that should have been the same but were 
inconsistent (such as inconsistency between the days 
from hospitalization to surgery and the number of people 
undergoing surgery). 

Sample Size 

There are few studies on the sample size that is needed 
for validation studies, and there are fewer studies on the 
same size that is needed for validation studies on models 
of survival data. Some empirical studies have shown that 
for the external validation of prognostic models, a 
minimum effective sample size of 100 is needed, and the 
ideal effective sample size is 200 or more Steyerberg et al. 
(2019), Collins et al. (2016), Van Calster et al. (2016). 

According to this criterion, in order for this study to 
achieve an unbiased and accurate estimation of the 
performance of the prognostic model, the study 
population should have at least 100 deaths. Given the 
relatively fixed number of hip fracture patients who are 
admitted each year, the needed sample size can be 
achieved only by expanding the time frame of the study. 
However, a timeline that extends too far into the past 
leads to difficulties in follow-up, in turn leading to 
decreased accuracy of outcome information. Therefore, 
we had to strike a balance between ensuring the accuracy 
of the follow-up results and expanding the study time 
frame. Under this premise and referring to the finding 
that revealed an approximately 10% mortality rate within 
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 1 year in the developmental study, we collected a dataset 
with a sample size of approximately 1000 to obtain 100 
deaths. 

Missing Data 

We estimated missing values via advanced multivariate 
model imputation techniques. Although studies have 
shown that the use of multiple imputation (MI) methods 
yields data that approximate the true values, these methods 
are complex and sometimes unnecessary Harel et al. 
(2007), Janssen et al. (2010). Some studies have shown that 
when the loss to follow-up rate is less than 10%, there is 
no significant difference between MI methods and other 
simple estimation methods Barzi et al. (2004). Empirical 
studies have shown that nonstatistician-friendly single 
imputation (SI) results in model prediction studies are not 
significantly different from MI results Missing Values et al. 
(2022). Therefore, we chose SI to address missing data 
(using the mouse package in R). When implementing SI, 
all 14 variables that were entered into the model were 
referenced. 

Statistical Analysis Methods 

In the model developmental study Fu et al. (2021), we 
clearly reported the mathematical equation of the SFHF 
model and the baseline hazard at 1 year after low-energy 
hip fracture. Therefore, we can easily obtain the 
prognostic index (PI) of the model and use this index to 
calculate the one-year survival rate of each individual in 
the validation study. The Cox regression model is typically 
expressed as h (t, X) = h0(t)exp (β1X1 + β2X2 +... + 
βmXm), where h (t, X) is the hazard function of an 
individual with covariate X at time t, h0(t) is the baseline 
hazard function, β' is the regression coefficient of m 
predictor variables X1 to Xm, and β1X1 + β2X2 +... + 
βmXm is the linear part of the model formula, which is 
positively related to the hazard function h (t, X). In other 
words, the greater the risk is, the larger the value of β1X1 
+ β2X2 + ... + βmXm. Therefore, the linear part of the 
model reflects an individual's prognosis, which is 
statistically referred to as the prognostic index (PI), that is, 
PI = β1X1 + β2X2 +... + βmXm. By transforming the 

above formula, we obtain PI = ㏑ [h(t, X)/h0(t)], which 
means that an individual's PI is the logarithm of the 
relative risk compared to a hypothetical individual with a 
PI of zero Royston et al. (2013), McLernon et al.(2023), 
Steyerberg et al.(2019). The PI is a dimensionless quantity 
that is derived from various indices and formulas, making 
it difficult to define a fixed range of values or a unit of 
measurement. In general, a higher PI indicates a poorer 
patient prognosis, whereas a lower PI suggests a better 
outcome. However, the interpretation of the PI may vary 
depending on specific clinical circumstances and the 
indices that are used for its calculation, thus requiring 
careful analysis and judgement. If expressed in terms of 
the survival rate, the model can be written  

 

as S (t, X) = S0(t)exp (β1X1 + β2X2 +... + βmXm) = S0(t)exp (PI). 

Specifically, for SFHF, according to the model formula 

we established in the development research, its PI = 

0.042*Age + 0.305*SEX + MLA - 0.272*ALI + 

0.343*CCD - 1.573*SUR + 0.008*SC - 0.082*ALB + 

0.171*HYP. The one-year survival rate after a patient 

experiences a fragility hip fracture can be calculated as S 

(1) = 0.984 exp (PI), and the absolute risk of death within 

one year can be calculated as 

1-S (1) = 1-S0(1) exp (PI) = 1-0.984 exp (PI). Although our 

developmental study provided a nomogram that as 

developed on the basis of a simple model, we declined to 

use the nomogram to calculate the survival of patients in 

the validation cohort because it was inefficient and prone 

to error. 

In the model developmental study, we described a full 

model and a reduced model; therefore, we evaluated both 

models in this study. 

Traditional Measures 

We evaluated the performance of the SFHF model by 
examining its discrimination and calibration on an 
external validation dataset D’Agostino et al. (2003). 

Specifically, for this study, discrimination refers to the 
ability of the model to distinguish patients with shorter 
survival times after hip fracture (predicting patients at 
high risk) from those with longer survival times 
(predicting patients at low risk) McLernon et al. (2023), 
Pencina et al. (2012). We used Harrell's c-index and Uno's 
c-value, the latter of which was more suitable for the 
censored survival data model Ramspek et al. (2020), 
McLernon et al. (2023), Pencina et al. (2012), Uno et al. 
(2011). The value of c ranged from 0.5 to 1, with 0.5 
indicating that the model has no discriminative ability and 
1 indicating perfect discrimination. Generally, a c value 
greater than 0.7 indicates that the discrimination of the 
model is acceptable. 

Calibration refers to the degree of agreement or 
consistency between the 1-year survival rate that is 
predicted by the model and the actual 1-year survival rate 
of a patient; that is, calibration refers to the degree of 
prediction accuracy. Crowson et al. (2016) Some studies 
have compared the advantages and disadvantages of 
mean calibration, weak calibration, moderate calibration 
and strong calibration, and these studies have concluded 
that model development and validation research should 
focus on moderate calibration because it ensures that 
clinical decisions based on the model will not cause harm 
Van Calster et al. (2016). Therefore, we generated a 
calibration plot of the model to assess its calibration 
Crowson et al. (2016). The specific method involved 
calculating the 1-year survival rate of each individual in  
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 the validation data via the SFHF model. The cohort was 
divided into ten equal groups according to the magnitude 
of the survival rate, after which the average predicted 
survival rate (as the x-axis) and the actual survival rate (as 
the y-axis) of each group were determined; the 
bootstrapping procedure of 1000 repetitions was used to 
obtain corrected values, which were added to a 
calibration plot for intuitive comparison. If the model 
produced perfect predictions for each group of patients, 
the respective values would fall on the standard 45-degree 
straight line in the graph. 

We also grouped the validation cohort according to 

prognostic index size and plotted Kaplan‒Meier curves 

that were superimposed with Kaplan‒Meier curves of the 
developmental cohort. The discrimination and 
calibration performance of the model can also be 
intuitively determined from this figure. If the survival 
curves for the risk groups in the validation cohort are 
separated to the same extent as the developmental data 
are, then the discriminative power of the model is 
preserved in validation; if the degree of separation 
between the sets of curves decreases, then the model is 
less discriminative and vice versa. If the sets of curves 
from the two studies are intertwined and follow the same 
trend, the model has good calibration. Otherwise, the 
calibration is poor. 

We also calculated the overall performance measure, 
namely, the Nagelkerke R2, to determine the model's 
ability to explain variation in the results of the validation 
dataset Steyerberg et al. (2018). This value ranges from 0 
to 1. The larger the value is, the greater the ability of the 
model to explain the variation and the higher the 
prediction accuracy of the model Steyerberg et al. (2010). 

Utility Measures 

The use of metrics such as model discrimination and 
calibration to assess the performance of a model is more 
of a statistical perspective that does not provide 
information about whether the model has clinical value 
Vickers et al. (2006), Van Calster et al. (2018), Vergouwe 
et al. (2002). The original intention of developing and 
validating prognostic models was to provide guidance for 
clinical decision-making. In this study, the original aim of 
the SFHF model was to identify patients at high risk of 
dying within 1 year after fragility fracture and to treat such 
patients conservatively in an attempt to reduce the 
mortality rate among these patients. Whether the 
application of the model can achieve this clinical goal 
with the traditional model performance measures that 
were mentioned above cannot answer this question. 
Decision curve analysis (DCA), which has emerged in 
recent years, can link a model to clinical consequences 
and answer the most basic and most important question 
of whether the use of a model can promote clinical 
development Vickers et al. (2006), Van Calster et al. 
(2018), Vickers et al. (2010). 

Therefore, we performed DCA to determine whether 
the SFHF model has clinical value in the validation 
population. 

DCA can reveal within which probability threshold 
range a model is valuable and determine the magnitude 
of the net benefit (NE) Van Calster et al. (2018), Vickers 
et al. (2008). The threshold probability means that under 
the probability of risk, for example, the expected benefit 
of choosing an intervention is equal to the expected 
benefit of rejecting the intervention Vickers et al. (2006), 
Localio et al. (2012). A model is considered clinically 
valuable if it achieves a greater net benefit than does the 
default strategy (treat all or treat none) within a 
reasonable threshold. Among them, whether this 
threshold range is reasonable depends on how much risk 
an individual is willing to take on a certain intervention. 

Importantly, if the validation results showed poor 
calibration in the SFHF model, then we simply revised 
the model to make it better suited to the new 
environment Steyerberg et al. (2019), Houwelingen et al. 
(2000). Otherwise, we did not update the model. 

Risk Groups 

Another purpose of establishing the SFHF model was to 
group patients with hip fractures according to their 
prognostic index to facilitate the clinically stratified 
management of these patients. The grouping standard 
was still inconclusive, and patients were mostly divided 
into 3 or 4 groups on the basis of their clinical needs 
Royston et al. (2013), Altman et al. (2009). In the 
developmental study, we divided patients into low-, 
intermediate- and high-risk groups, with equal numbers 
of patients in each group. In the validation study, 
however, we regrouped the developmental data in an 
attempt to maximize between-group differences and 
minimize within-group differences Ramspek et al. 
(2020), Altman et al. (2009). Our grouping method was 
as follows: according to the size of the prognostic index, 
in terms of percentiles, the cut-off points were 0.15, 0.5, 
and 0.9. This resulted in a worst prognosis group that 
included 10% of the total sample, and this group 
exhibited a 1-year mortality rate (9.25%) that was similar 
to that observed in the developmental study. In this 
study, we also divided the validation cohort into 4 groups 
according to the abovementioned grouping method on 
the basis of the prognostic index that was provided by 
the SFHF model in the validation population. 

Development versus Validation 

To help readers more clearly understand the differences 
in patient conditions between the two studies, we 
provided special explanations for the differences in 
setting, patient inclusion criteria, predictors, and 
outcome definitions and measurements between the 
validation and developmental studies. 
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 The dataset that was used in the developmental study 
came from Fenyang Hospital, which is a comprehensive 
teaching hospital for secondary care, in Lvliang city, 
Shanxi Province, China (located in western central 
Shanxi). The majority of the patients who were admitted 
(approximately 80%) were from rural areas. The dataset 
that was used in the validation study came from Shanxi 
Bethune Hospital in China, which is a level 3 regional 
referral hospital located in Taiyuan, the provincial 
capital, that is affiliated with the comprehensive teaching 
hospital of Shanxi Medical University. Approximately 
60% of the patients who were treated at this hospital 
were from rural areas. Therefore, the two hospitals are 
not only geographically different but also substantially 
different in level. 

Among the predictors, we redefined CCD and LD (see 
above for details), expanded the range of diseases that 
were considered positive results, and ensured that 
disease definitions more truly reflected individual patient 
characteristics. All the variables were coded in the same 
way as in the developmental study. Extreme SC values 
were also winsorized (creatinine values > 99th percentile 
were contracted to 99th percentile values). We also made 
slight adjustments to the patient inclusion criteria. The 
developmental study excluded patients with hip 
fractures coexisting with other fractures. In the 
validation study, eligible patients were allowed to have 
fragility fractures at other sites if they were caused by the 
same trauma that caused the hip fracture, regardless of 
whether the fracture had been treated surgically. These 
combined fractures, including distal radius, proximal 
humerus, and vertebral compression fractures, are the 
most prone to fragility fractures. The reason for this 
adjustment was that this condition is not uncommon in 
the clinic. 

There was no difference between the two studies in 
terms of the outcome of interest, which was all-cause 
mortality within 1 year of fracture. 

In general, compared with the developmental study, this 
validation study differed considerably in terms of its 
research setting, differed slightly in terms of its inclusion 
criteria and definition of predictors, and did not differ in 
its target results. 

RESULTS 

Participants 

This study ultimately included 877 eligible patients with 
fragility hip fractures, 47 of whom were lost to follow-
up. Among the 830 patients who were successfully 
followed up, 87 died within 1 year (shown in Figure 1). 
The follow-up time ranged from 7 days to 2295 days, 
with a median follow-up time of 829 days. Because we 
focused on survival or death within 1 year (365 days) 
after fracture, follow-up times beyond 1 year were 
truncated to 365 days. 

 

The characteristics of the eligible participants are 
shown in Table 1. 

Figure 1: Flowchart of patient screening process 

 

To help readers clearly understand the difference 
between the validation cohort and the developmental 
cohort, we present the characteristics of the two 
cohorts in a comparison table (shown in Table 2). 
Because the level of the validation research hospital 
was higher than that of the developmental research 
hospital, the patients who were admitted to the former 
had more complicated and serious conditions. This can 
be seen from the fact that the proportion of patients 
with secondary hip fractures and patients with 
malignancies was substantially greater in the validation 
study than in the developmental study. 

Model Performance 

To make it easier for readers to understand the 
differences in the predictions that were made by the 
SFHF model in the two cohorts, we compare the 
distributions of the PIs from the two studies. The PI is 
the weighted sum of the variables in the model, where 
the weights are the regression coefficients Royston et 
al. (2013), Ramspek et al. (2020), Moons et al. (2015). 
Comparisons of the PI distributions of the two studies 
are shown in Table 3 and Figure 2. There are no 
obvious outliers in the validation data, and the PI 
distribution in the validation study is wider than that in 
the developmental study. 

Discrimination 

Harrell's c-index, Uno's c-value and the Nagelkerke R2 
of the SFHF model are shown in Table 4. 

Calibration 

The calibration plots of the full and simplified SFHF 
models when used on the validation data are shown in 
Figure 3 and Figure 4. 

 

Fig. 1. Flowchart of patient screening process 

Excluded patients (n=255) 

Among them, patients <50 years 

old: n=111 

Patients with non-low-energy 

fractures: n=144 

Lost to follow-

up (n=47) 

Successfully 

followed up 

(n=830) 

Died within 1 year 

(n=87) 

Survived within 1 

year (n=743) 

All patients with hip fracture 

(n=1132) 

2016-1-1～2021-10-31 

Eligible hip fracture patients 

(n=877) 
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Table 1: Participant Characteristics 

Characteristics Missing Values, n (%) Value 

Sociodemographic characteristics   

Mean age (years) 0 76.3 (SD, 9.6) (range 50-97) 

Male 0 298 (34.0%) 

Medical insurance 0  

Employee medical insurance (EMI)  301 (34.3%) 

Non-EMI  576 (65.7%) 

Fracture-related   

Fracture site 0  

Femoral neck  447 (51.0%) 

Intertrochanteric  414 (47.2%) 

Intertrochanteric  16 (1.8%) 

Fracture type 0  

Primary  696 (79.4%) 

Secondary  181 (20.6%) 

Fracture to admission (d) 0 4.0 (SD, 13.2) (range 0-216) 

Admission to surgery (d) 0 4.6 (SD, 3.5) (range 0-38) 

(n=769)   

Length of stay (LOS) 0 12.1 (SD, 9.1) (range 1-130) 

Medical history   

Diabetes 2 (0.2%) 190 (21.7%) 

Hypertension (HYP) 2 (0.2%) 440 (50.3%) 

Malignancy (MLA) 0 62 (7.1%) 

Kidney disease (KD) 0 18 (2.1%) 

Lung disease (LD) 28 (3.2%) 191 (22.5%) 

Ability to live independently (ALI) (no = 0, 

yes = 1) 
0 110 (12.5%) 

Cardiovascular and cerebrovascular disease 

(CCD) 
1 (0.1%) 477 (54.5%) 

Clinical indicators   

Blood sugar (BS) (mmol/L) 166 (18.9%) 6.7 (SD, 2.4) (range 3.2-25.1) 

Serum creatinine (SC) (μmol/L) * 53 (6.0%) 
79.3 (SD, 41.7) (range 26.5-

378.3) 
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Haemoglobin (Hb) (g/L) 20 (2.3%) 
116.6 (SD, 20.2) (range 47.0-

218.0) 

Albumin (ALB) (g/L) 43 (4.9%) 
35.3 (SD, 4.4) (range 18.9-

52.3) 

Mean arterial pressure (MAP) (mmHg) 0 
100.0 (SD, 14.3) (range 59.3-

147.3) 

Partial pressure of oxygen (PaO2) (mmHg) 289 (33.0%) 
72.5 (SD, 20.3) (range 25.8-

184.4) 

Total protein (TP) (g/L) 103 (11.7%) 
63.1 (SD, 6.6) (range 41.1-

93.5) 

Treatment   

Osteodistraction 1 (0.1%) 96 (11.0%) 

Surgery 0 769 (87.7%) 

Note. SD: standard deviation 

* Value before SC was winsorized: 82.1 (SD, 64.9) (range 26.5-854.6). 

Table 2: Comparison of Participant Characteristics between the Developmental and Validation Cohorts 

 

Characteristic Developmental Cohort(n=735) External Validation Cohort (n=877) 

Setting   

Mean age (years) 74.8 (SD, 9.5) (range 50–103) 76.3 (SD, 9.6) (range 50-97) 

Male 279 (38.0%) 298 (34.0%) 

EMI 101 (13.7%) 301 (34.3%) 

Femoral neck 305 (41.5%) 447 (51.0%) 

Intertrochanteric 413 (56.2%) 414 (47.2%) 

Secondary fracture 46 (6.3%) 181 (20.6%) 

Admission to surgery (d) 5.5 (SD, 3.3) (range 1–45) 4.6 (SD, 3.5) (range 0-38) 

LOS 13.0 (SD, 6.4) (range 1–52) 12.1 (SD, 9.1) (range 1-130) 

Predictors   

HYP 357 (48.6%) 440 (50.3%) 

MLA 18 (2.4%) 62 (7.1%) 

ALI 107 (14.6%) 110 (12.5%) 

CCD 295 (40.1%) 477 (54.5%) 

SC (μmol/L) 
70.3 (SD, 23.8) (range 26.0–

190.8) 
79.3 (SD, 41.7) (range 26.5-378.3) 

ALB(g/L) 37.9 (SD, 4.1) (range 21.8–48.2) 35.3 (SD, 4.4) (range 18.9-52.3) 

Surgery 637 (86.7%) 769 (87.7%) 

Outcome   

Death within 1 year 68 87 

Lost to follow-up 11 (1.5%) 47 (5.4%) 
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Table 3: Comparison of PI distributions in the developmental and validation studies 

Measurement Developmental study Validation study 

 FULL LASSO FULL LASSO 

Mean -1.25 -1.241 -0.736 -0.74 

Median -1.293 -1.286 -0.835 -0.859 

Range of values -4.071, 2.563 -3.963, 2.566 -3.785, 3.890 -3.693, 3.841 

Range 6.634 6.529 7.675 7.534 

SD 1.211 1.194 1.278 1.253 

Note. SD: standard deviation 

Table 4: Discriminative performance measurements of the SFHF model 

        
Measurement 

Developmental 
Internal 

Validation 
(B=1000) 

External Validation 

 
Harrell’s c-

index (SE） 

Uno’s c-value  

(SE） 
R2 

Harrell’s 
c-index 

R2 
Harrell’s 
c-index 

Uno’s c-
value 

R2 

Full model 0.816 (0.025) 
0.817  

(0.025) 
0.188 0.789 0.147 

0.764 
(0.024) 

0.765 
(0.024) 

0.144 

LASSO model 0.814 (0.026) 
0.815  

(0.025) 
0.187 0.795 0.158 

0.763 
(0.024) 

0.763 
(0.024) 

0.144 

 
Figure 2: PI histograms for the developmental and 
validation datasets. The three vertical lines on the graph 
are the percentile cut-off points of risk grouping, 0.15, 0.5, 
and 0.9. 

 

 

Figure 3: The calibration plot of the FULL model in the 
validation dataset 
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 Figure 4: The calibration plot of the LASSO model in the 
validation dataset 

 

As shown in Figure 3, most of the validation study 
populations were concentrated in the high survival 
direction. The difference in survival between the group 
with the lowest predicted survival rate (mean predicted 
survival rate = 0.579) and the group with the second lowest 
survival rate (0.808) was the most significant. The 
difference between groups decreased as the predicted 
survival rates increased. The differences among the 5 
groups with the highest survival rates were essentially the 
same. The confidence intervals for the predicted risks of 
all the groups covered the ideal 45° line. 

Figure 4 shows that the calibration map features of the 
least absolute shrinkage and selection operator (LASSO) 
model are basically the same as those of the full model. 

Risk Groups 

After obtaining the prognosis of each patient, we divided 
the population into four groups according to the 

aforementioned grouping method and plotted the Kaplan‒
Meier curves of each group. We overlapped the survival 
curves from the two studies for comparison (shown in 
Figure 5). The specific survival rates of each risk group in 
the two studies are shown in Table 5. 

Figure 5 shows that, in general, the survival curves of 
each group in the validation study are in good agreement 
with those in the developmental study. Specifically, in the 
very good and bad groups, it seems that the validation 
curves were systematically lower than the developmental 
curves, but in the good and very bad groups, the curves of 
the two studies were almost identical. The degree of 
separation between the respective curves of the two studies 
was similar, and the degree of separation between the 

curves of the good group and the bad group in the  

 

 

 

validation study was even better than that in the 
developmental study. 

Figure 5:  Survival curves for each risk group in the 
developmental and validation studies 

 

Clinical Usefulness 

The results of DCA of the SFHF model in the validation 

cohort is shown in Figure 6. 

Figure 6: Decision curve analysis of SFHF in the 

validation data 

 

Figure 6 shows that when the risk threshold is in the 
range of 0.03~0.38, the net benefit of using the SFHF 
model for clinical decision-making is better than that of 
the default treat all or treat none strategies. When the 
value is between 0.38 and 0.50, the net benefit becomes 
unstable. Compared with the treat none strategy, the 
corresponding range of net benefit of using the SFHF 
model is 0.105 (risk threshold = 0; at this time, using the 
SFHF model is equivalent to adopting the treat-all 
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Table 5: Survival rates for the respective risk groups in the developmental and validation studies 

Risk group Developmental data Validation data 

 N (risk) N (mean) Survival SE N (risk) N (mean) Survival SE 

Very good 95 0 1 0 111 2 0.985 0.011 

Good 211 9 0.964 0.012 242 14 0.953 0.012 

Bad 219 30 0.891 0.019 261 43 0.873 0.018 

Very bad 38 29 0.594 0.059 51 34 0.61 0.052 

 
strategy) ~ 0 (0.38). Compared with the treat all strategy, 
the net benefit of using the SFHF model ranges from 0 
(0.03) to 0.046 (0.11; at this time, the net benefit of the 
treat all strategy is 0). The decision curves of the full model 
and the simple model are basically the same. 

Model Updating 

Given the good performance of the model in calibration 
plots and survival curve plots, we did not consider 
updating the SFHF model. 

DISCUSSIONS 

Limitations 

Any study has certain limitations, and this research is no 
exception. First, owing to the inherent deficiencies in the 
retrospective study design, there was a lack of initiative in 
the collection of patients' individual characteristics. Some 
predictors were not available, which resulted in lost 
opportunities to evaluate some similar models. Moreover, 
the measurement of data cannot be standardized in 
advance, as in prospective studies; this affects the accuracy 
of the measurement of different variables to a certain 
extent, thereby affecting the reliability of the verification 
results. Second, the effective sample size of this study was 
93 deaths. This number was close to the value of at least 
100 valid events, which is currently considered the 
minimum requirement for external validation studies; 
however, it is still far from the ideal requirement (the ideal 
valid sample size is 200 or more). This affects the 
robustness of the findings to some degree. Third, 
compared with other outcomes, such as postoperative 
function and pain, all-cause mortality is relatively objective, 
so retrospective follow-up of death is reliable. However, 
for patients who have been deceased for 3 years or longer, 
it is difficult to determine the specific time of death via 
retrospective telephone follow-up, and the accuracy of this 
approach is still not satisfactory compared with the follow-
up approaches of prospective studies. This also affects the 
reliability of the study. Fourth, this study has 
geographic/broad validation, and it is a moderate-intensity 
study Ramspek et al. (2020), Moons et al. (2012). However, 
a validation study that is performed by a developer 
inherently has a certain degree of bias compared with a 

 

 

 

study that is organized by others. Fifth, although the 
population of the validation study came from other 
institutions, the two institutions are geographically 
adjacent, and there is a small overlap in the patients who 
are admitted. This affects the evaluation of the 
transportability of the model. The generalization of the 
results of this study should be performed with great 
caution if the model is to be considered for use in the 
wider region of China. Sixth, the validation study revealed 
that the Nagelkerke R2 was 0.144, indicating that there is 
still much room for improvement in the ability to explain 
outcome variation. Such a result can be expected; after all, 
we used only preoperative characteristics that were easily 
and quickly available in a short timeframe after admission 
as predictors and excluded intraoperative and 
postoperative characteristics (such as intraoperative or 
postoperative complications) that account for more 
variation in mortality outcomes Li et al. (2021). Seventh, 
some patients' families and doctors may be more 
concerned about the risk of death in a shorter period after 
fracture, such as six months or three months after 
fracture, which can provide more sufficient reasons for 
the decision to avoid surgery. Risk predictions for these 
time points were less robust because of the smaller 
effective sample size in shorter periods. Therefore, the 
use of this model to predict the risk of death in a shorter 
period is not recommended. 

Interpretation 

As mentioned above, from the perspective of different 
settings and individual predictor definitions between the 
two studies, this study has geographic or broad validation, 
so the research results are moderately strong. Therefore, 
we focused on the transportability of the model rather 
than its reproducibility. According to the research results 
described above, it can be concluded that the 
performance of the simple LASSO model is essentially 
indistinguishable from that of the full model. Therefore, 
here, we explain only the results of the LASSO model. 
According to the comparison of the PI of the two studies, 
the SFHF model provided a similar amount of prognostic 
information on the two sets of data Altman et al. (2000). 
According to the grouping method of this study, the 
prognostic information value of the model in the 
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 developmental study was mortality in the highest risk 
group and mortality in the lowest risk group, that is, 
0.392-0=0.392. In the validation study, this value was 
0.386-0.015=0.371. The amount of prognostic 
information available in developmental studies was 
largely maintained in the validation data. From this 
perspective, the accuracy and generalizability of the 
model are confirmed. In terms of discrimination, 
although Harrell's c-index changed from the original 
value of greater than 0.8 (good) to 0.763 (acceptable), 
according to the numbers, the discrimination 
decreased. However, given the marked differences in 
the patient conditions between the two studies, we 
believe that the SFHF model has good discriminative 
power in validation. To further confirm the good 
discriminative power of the SFHF model, we also 
provided Uno's c statistic, which is more applicable 
to survival data with censored outcomes. A 
comparison of Uno’s c-value with Harrell's c-index 
revealed that the discriminative power of the SFHF 
model was very stable in validation (see Table 4). In 
addition, good discrimination is also shown in Figure 
5, where the survival curves of the high-risk 
population in the validation study were clearly 
separated from those of the other groups, confirming 
the good ability of the model to identify the high-risk 
population. Some scholars believe that the best 
indicator for assessing the usefulness of a model is its 
ability to separate different risk groups. If we follow 
this standard, we can say that the SFHF model has 
been successfully validated Altman et al. (2009). 

From a calibration point of view, the predicted 
probability of the SFHF model is relatively accurate. 
The patients were divided into 10 groups according 
to the predicted risk probability obtained from the 
model, and compared with the actual observations of 
each group, there was no significant difference 
between the predicted and actual results. This is 
reflected by the fact that the predicted risk confidence 
intervals for each group covered the ideal standard 
line that indicates perfect prediction. 

Similarly, the accuracy of the prediction can be visually 
assessed, as shown in Figure 5. In Figure 5, although the 
very good and bad groups seem to have slightly 
systematically high predictions, in the high-risk group, on 
which we are most focused, the survival curves of the two 
groups of data are intertwined with a high degree of 
agreement. Overall, the survival curves of the respective 
risk groups in the two studies were in good agreement, 
confirming good calibration of the SFHF model. 

Research shows that accurate models are not necessarily  

 

Useful Steyerberg et al. (2010), Vickers et al. (2006), 
Vickers et al. (2008). Therefore, it is insufficient to 
conclude that a model has been successfully validated on 
the basis solely of statistical accuracy. In terms of clinical 
usefulness, the SFHF model has great practical value in 
externally validated populations. In the DCA, when the 
risk threshold was between 0.03 and 0.38, the net benefit 
of the model was better than that of the treat all or treat 
none strategies. When we predict a patient's 1-year risk of 
death to be low, i.e., less than 0.05, it is clear that doctors 
and patients will not hesitate to choose surgery when 
choosing a treatment approach. At this risk level, surgery 
clearly benefits most patients. Conversely, when the risk 
of death is obvious, i.e., greater than 0.5, doctors and 
patients will not hesitate to choose conservative 
treatment. When the risk lies in the middle, doctors and 
patients are confused. Our DCA results show that, within 
these risk thresholds, clinical decision-making based on 
our model is highly valuable. For example, if we set the 1-
year risk of death threshold to 10%, if a patient's predicted 
risk of death exceeds 10%, conservative treatment is 
considered; otherwise, surgery is considered compared 
with the option of surgical treatment for all patients (treat 
none), NE =0.049. This means that the net result of 
making decisions on the basis of the SFHF model is that 
out of 100 patients, we would conservatively treat 4.9 
patients who would die within 1 year, rather than treating 
all patients with surgery and having surgery-treated 
patients not die within 1 year. In contrast to the 
conservative treatment strategy for all patients (treat all), 
the model's NE=0.049-0.010=0.039, which was 
calculated via the net benefit formula 
0.039×100/(0.1/0.9)=35.1. This means that, according to 
the predictive model, the use of conservative treatment 
decreased by 35.1% among patients who would not die 
within 1 year, whereas the number of patients who would 
die within 1 year of surgical treatment did not increase 
Vickers et al. (2006). Compared with the use of surgery 
for all patients as the default strategy, the difference in NE 
that was obtained by model-based decision-making was 
ΔNE=0.049-0=0.049, and the test trade-off was 
1/0.049=20.4. If we are willing to apply the model to 20 
patients to identify patients who will die within 1 year of 
fracture, then the model is valuable Van Calster et al. 
(2018). Unfortunately, we cannot provide a reasonable 
risk threshold here, as it varies from individual to 
individual and involves the need to reasonably evaluate all 
possible outcomes Van Calster et al. (2018). 

Overall, the reproducibility and generalizability of the 
SFHF model were confirmed in this external study, both 
by traditional metrics and by clinical usefulness. At this 
point, we can conclude that the SFHF model has been 
initially successfully validated. Unlike the Li et al. (2021) 
and Endo et al. (2018) models, which use intraoperative 
or postoperative indicators as predictors, our model 
includes only preoperative individual characteristics that  
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can be quickly and easily determined after admission. 
Additionally, unlike the model described by Ma et al. 
(2018), which requires multidisciplinary collaboration to 
obtain accurate predictors, the SFHF model does not 
require the assistance of multidisciplinary consultation, 
and the predictors can be independently determined by 
an orthopaedic surgeon 48 hours after admission. The 
outstanding features of convenience, speed, and accuracy 
provides the most fundamental guarantee that this model 
will enter clinical practice in the future. There is no 
complex scoring system for the model predictors, 
avoiding the use of the model as a predictor, as in Hjelholt 
et al. (2022), Trevisan et al. (2021), Li et al. (2021), and 
Söderqvist et al. (2009). Moreover, no interaction variable 
is introduced, making the model easy to understand and 
explain. 

Implications 

 The initial verification of the SFHF model was 
successful, confirming that the strategy we chose for 
model development on the basis of a small sample is 
feasible. That is, according to the principles and purposes 
of modelling, combined with professional knowledge and 
previous research results, the number of input variables is 
controlled instead of using a data-driven variable selection 
strategy to avoid overfitting. Owing to the limited 
strength of this validation study, we urgently need to 
increase the validation strength. For example, 
nondevelopers should validate the model with a more 
heterogeneous, sufficient and relevant population from 
other regions of China (e.g., eastern and southern China) 
to further evaluate the generality and accuracy of the 
SFHF model. On the other hand, given the effectiveness 
of the preliminary validation, we may consider conducting 
model impact studies in our hospital to investigate 
whether the clinical application of the SFHF model can 
reduce 1-year mortality after hip fracture among elderly 
individuals compared with not using the model Moons et 
al. (2009), Reilly et al. (2006). In addition, in the study of 
prognostic factors, this model can also be used as 
guidance for multivariate adjustment analysis. 

CONCLUSION 

The results of the study indicate that, from a statistical 
point of view, the SFHF model has good discrimination 
and calibration; that is, the model has certain accuracy and 
generalizability. From a clinical point of view, the model 
has clinical value. Therefore, we can consider applying 
this model to the management of elderly patients with hip 
fractures and, accordingly, the formulation of treatment 
plans, with the expectation of reducing 1-year mortality in 
this population. 

ABBREVIATIONS 

SFHF: Survival after fragility hip fracture; DCA: Decision 
curve analysis; CI: Confidence interval; LOS: Length of 

 

stay; ALI: Ability to live independently; LD: Lung disease; 
CCD: Cardiovascular and cerebrovascular disease; KD: 
Kidney disease; MAL: Malignancy; HYP: Hypertension; 
MAP: Mean arterial pressure; PaO2: Partial pressure of 
oxygen; Hb: Haemoglobin; SC: Serum creatinine; BS: 
Blood sugar; ALB: Albumin; TP: Total protein; SUR: 
Surgery; MI: Multiple imputation; SI: Single imputation; 
PI: Prognostic index; LASSO: Least absolute shrinkage 
and selection operator; NE: Net benefit. 
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