HUMAN BIOLOGY
2025, VOL. 95, ISSUE 3
ORIGINAL ARTICLE OPEN (7) ACCESS

Nomogram For Predicting Survival in Breast Cancer Patients Based on
Lncrna Expression and Clinical Characteristics

Alon Ben-Ariel, Hagit Deutsch?, Jolene Seibe!-Seamor?, John F Visintine!, Benjamin E Leiby’
ABSTRACT

Objective: Current prognostic models for breast cancer (BC) are largely dependent on clinical factors and
immunohistochemical markers, or in some cases, a limited number of gene signatures. These approaches have certain
limitations in accuracy and clinical applicability. This study aimed to construct a predictive nomogram that integrates
molecular signatures of long non-coding RNAs (IncRNAs) with conventional clinical factors, thereby providing a more
comprehensive and individualized tool for survival prediction in BC patients.

Methods: Using The Cancer Genome Atlas (TCGA) database, RNA-sequencing data and clinical information of breast
cancer patients were retrieved. Differentially expressed genes were identified with the DESeq2 R package, followed by
univariate and multivariate Cox regression analyses to identify prognostic IncRNA biomarkers. A 9-IncRNA risk score
model was then established and validated. Independent prognostic factors were further integrated with clinical variables,
and a predictive nomogram was constructed. Model performance was evaluated using the concordance index (C-index),
Kaplan—Meier survival analysis, ROC curves, and calibration plots.

Results: A total of 1208 transcriptome profiles were analysed, including 1096 breast cancer and 112 normal tissue
samples. From these, 2100 differentially expressed genes were identified. Nine IncRNAs (AC068858.1, AC000067.1,
LINC00460, LINC02408, AC136475.5, AC023043.4, AC073359.1, AC244502.1, and COL4A2-AS1) were significantly
associated with overall survival (OS). Four acted as risk factors (HR > 1), whereas five served as protective factors (HR
< 1). The 9-IncRNA signature stratified patients into high- and low-risk groups with significant prognostic differences (p
< 0.001). Time-dependent ROC curves demonstrated strong predictive accuracy, with AUC values ranging from 0.72—
0.92 across different datasets and follow-up periods. Multivariate Cox analysis confirmed that age and the IncRNA model
were independent prognostic predictors. A nomogram combining these two factors was constructed, achieving a C-index
of 0.81 and demonstrating excellent calibration for 1-, 3-, and 5-year OS predictions.

Conclusion: The 9-IncRNA-based prognostic model, integrated with clinical risk factors such as age, provides a robust
and individualized tool for predicting breast cancer survival. This nomogram may serve as a valuable reference for clinical
decision-making and personalized management strategies in breast cancer patients.

INTRODUCTION eventually progress to advanced disease, with a median

survival of only three years and markedly reduced long-
Breast cancer (BC) is the most common malignancy

. _ A X term survival. Given the heterogeneous nature of BC—
among women worldwide, with rising incidence rates in

characterized by substantial molecular and clinical
variability—accurate prognostic prediction remains a
major clinical challenge. Yue Gong et al. (2021).
Traditionally, prognostic models have relied on clinical
and pathological variables, including tumor stage,

many regions. In China alone, approximately 416,000 new
cases and 120,000 deaths occur annually. ALLEMANI C
et al. (2018). Despite advances in eatly detection and
treatment, 30—40% of patients with early-stage BC
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histological subtype, hormone receptor status, and
HER?2 expression. Lang GT et al. (2020)- Rinn JL et
al. (2012). Although these models have improved
treatment stratification, they fail to capture the
molecular complexity underlying tumor progression.
More advanced gene expression—based models, such
as the 70-gene MammaPrint and 21-gene Oncotype
DX signatures, have provided important insights but
are limited by platform dependence, high cost, and
restricted clinical utility in diverse populations.

Long non-coding RNAs (IncRNAs)—defined as
transcripts longer than 200 nucleotides without
protein-coding capacity—have emerged as crucial
regulators of gene expression, chromatin remodeling,
and tumor biology. Mounting evidence shows that
IncRNAs are involved in cell proliferation, apoptosis,
invasion, and metastasis, and their dysregulation is
closely linked to cancer prognosis. Morris K Vet al.
(2014).
exhibit tissue- and cancer-type specificity, making
them attractive biomarkers for prognosis prediction.
Yan X et al. (2015).

Unlike protein-coding genes, IncRNAs

Given these considerations, this study aimed to
identify IncRNAs associated with breast cancer
survival using large-scale TCGA datasets and to
integrate these molecular biomarkers with clinical risk
factors to construct a predictive nomogram.
Miyamoto et al, (2018) - Quinn JJ et al. (2014). Such
a model could provide clinicians with a practical and
individualized tool for risk assessment and treatment
planning.

MATERIALS AND METHODS
Data acquisition

RNA-sequencing data (IncRNA
mRNAexpression profiles) and clinical information
for 1096.

and

BC patients and 112 normal controls were downloaded
from the TCGA-BRCA project Engreitz JM et al.
(2016)- Guo (2010).
(https://portal.gdc.cancer)

et al.

Figure 1: Differential expression analysis of IncRNAs
in breast cancer.

A Volcano

~log10(fdr)

logFC

(A) Volcano plot displaying differentially expressed
IncRNAs between breast cancer and normal tissue
samples.

(B) Heatmap showing the expression patterns of
significantly differentially expressed IncRNAs in breast
cancer patients.

Differential expression analysis

The DESeq2 R package was used to identify
differentially expressed IncRNAs (DELs) and mRNAs
(DEMs) between tumor and normal samples. Lin TY
et al. (2016), Beermann J et al. (2016), Pandey GK et
al. (2014). Thresholds were set at |log2FC| > 1 and
adjusted p < 0.05. Results were visualized using
volcano plots (ggplot2) and heatmaps (pheatmap).

Prognostic IncRINA identification and risk score
model

Univariate Cox regression was performed to identify
IncRNAs significantly associated with overall survival
(OS). Boon RA et al. (2016)- Qu L et al. (2018).

Table 1: Clinical characteristics of breast cancer patients in the TCGA cohort

Variable PHHZ?:Z 52:; aset Enzgi Bg;?set p-value
Age (<60 / =60) 285 / 239 573 / 480 0.64
Stage (I-11 / HII-1IV) 388 / 136 781/ 272 0.57
T stage (T1-T2 / T3-T4) 421 /103 846 / 207 0.42
N stage (NO-N1 / N2 N3) 352 /172 691 / 362 0.39
M stage (MO / M1) 501 /23 1008 / 45 0.71
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Candidate IncRNAs were further validated using
multivariate Cox analysis. White NM, et al. (2017),
Simpson PT et al. (2010), Park YH et al. (2011). A
prognostic risk score was then calculated for each patient
as a weighted sum of expression values multiplied by
their corresponding Cox regression coefficients. Rakha
EA, et al. (2010), Chowdhury N et al. (20006). Patients
were stratified into high- and low-risk groups based on
the median risk score.

Figure 2: Validation of the 9-IncRNA signature in the
primary dataset.
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time-dependent ROC analysis.
RESULTS
Identification of differentially expressed IncRINAs

Analysis of 1208 transcriptome samples revealed 2100
significantly differentially expressed IncRNAs (DELs)
between tumor and normal breast tissues (p < 0.05,
Perou CM et al. (2000), Blows FM et al. (2010),
Colombo et al. (2011). logFC > 1).

Figure 3: 9- IncRNA risk stratification of markers for
age.
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(A) Distribution of risk scores, overall survival status,
and heatmap of the 9-IncRNA expression profiles.
(B) Kaplan—Meier survival curves comparing high-risk
and low-risk groups.
(C) Time-dependent ROC curves for predicting 2-, 4-, 6-
, 8-, and 10-year overall survival.

Nomogram construction

Independent prognostic factors were identified by
multivariate Cox regression incorporating both clinical
variables and the IncRNA risk score. Nguyen—Ngoc
KV et
constructed

al. (2012) A predictive nomogram was
3-, and 5-year OS

probabilities. Model performance was assessed using the

to estimate 1-,

concordance index (C-index), calibration plots, and

A: High-risk group and low-risk Kaplan-Meier curves
based on 9-IncRNA markers when age < 60; B: High-
risk group and low-risk Kaplan-Meier curve based on
9-IncRNA marker when age =60.

Dataset partitioning and validation

After excluding patients with incomplete clinical data
or survival < 0 days, 1053 BC patients were included.

Veer L] et al. (2002), Markopoulos C et al. (2013),
Knowles MA et al. (2015) Among them, 524 patients
were randomly assigned to the primary dataset, while
the full cohort was used as the validation dataset.

Van Batavia | et al. (2014), Warrick JI etal. (2019) No
significant differences in clinical characteristics were
found between groups (p > 0.05).

Table 2: Nine IncRNAs significantly associated with overall survival in breast cancer patients

IncRNA HRR(;’S“d 95% CI p-value Role
AC068858.1 3.66 192 -6.82 <0.001 Risk
AC000067.1 2.58 141472 0.002 Risk
LINCO00460 1.18 1.07 - 1.32 0.001 Risk
LINC02408 1.87 1252381 0.003 Risk
AC136475.5 0.63 0.42—0.95 0.029 Protective
AC023043.4 0.56 0.34-0.92 0.021 Protective
AC073359.1 0.38 0.19-0.76 0.006 Protective
AC244502.1 0.41 0.22-0.76 0.004 Protective

COLAA2-AS1 0.52 0.31—0.88 0.015 Protective
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Prognostic IncRINAs associated with survival

Nine IncRNAs significantly correlated with OS were
identified. Beermann ] et al. (2016)- Huarte M et al.
(2015) Among them, AC068858.1, AC000067.1,
LINC00460, and LINC02408 were associated with poor
survival (HR > 1), whereas AC136475.5, AC023043.4,
AC073359.1, AC244502.1, and COL4A2-AS1 were
protective (HR < 1).

Figure 4: Nomogram of predicted 1/3/5-year overall
survival in BC patients.
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A: A nomogram used to predict overall survival; B:
Calibration chart of 3-year overall survival predicted by
the nomogram in the primary dataset; C: Calibrated chart
of 5-year overall survival predicted by the nomogram in
the primary dataset; D: Calibration chart of 3-year
overall survival predicted by the nomogram in the entire
dataset; E: Calibration chart of 5-year overall survival
predicted by the nomogram in the entire dataset.

Construction of the 9-lncRNA risk score model

A prognostic risk score formula was generated from the
9 IncRNAs. Kopp F et al. (2018) Kaplan—Meier analysis
demonstrated significantly worse survival in the high-risk
group compared with the low-risk group (p < 0.001).
ROC curves confirmed strong predictive accuracy, with
AUC values up to 0.92 at 8 years.

Independence of the 9-IncRNA model from clinical
variables

Multivariate Cox regression revealed that age and the 9-
IncRNA risk score were independent predictors of OS (p
< 0.001). Stratified analyses confirmed the prognostic
utility of the 9-IncRNA signature in both younger (<60
years) and older (=060 years) subgroups.

Development
nomogram

and validation of the predictive

A nomogram integrating age and the 9-IncRNA signature
was constructed to predict individual survival outcomes.
Calibration plots demonstrated excellent agreement
between predicted and observed survival rates. The
model achieved a C-index of 0.81, indicating strong
predictive performance.

Table 3: Multivariate Cox regression analysis in the
primary dataset

Variable HR 95% CI p-value
Age 1059 hoe <0.001
Stage 1114 0o 0.091

T stage 1.082 R 0.245
N stage 1.071 Offg{ 0.089
M stage 1.129 0?;28_ 0.174
9‘EZ§§A 1.035 s <0.001

Table 4: Univariate and multivariate Cox proportional risk regression analysis of each risk factor in the entire dataset

Clinical features Univariate analysis multivariate analysis
HR p value HR p value
Age 1.036 <0.001 1.035 <0.001
Stage 2.123 <0.001 1.531 0.110
T 1.562 <0.001 1.042 0.790
N 1.705 <0.001 1.248 0.140
M 5.907 <0.001 1.460 0.380
Risk score 1.005 <0.001 1.004 0.0004
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DISCUSSION

Breast cancer prognosis remains difficult to predict due
to its marked heterogeneity. Current clinical models,
although wuseful, are limited in capturing molecular
complexity and patient variability. This study highlights
the clinical potential of IncRNAs as robust biomarkers for
survival prediction.

By analyzing TCGA data, we identified a panel of 9
IncRNAs that effectively stratified patients into distinct
prognostic groups. Importantly, the IncRNA-based
model retained predictive power independent of
conventional clinical factors such as TNM stage,
confirming its robustness. Integration of age and IncRNA
risk scores into a nomogram further improved prognostic
accuracy, providing clinicians with a simple and

quantitative tool for individualized prediction.

Compared with existing models such as Oncotype DX or
IncRNA-based
advantageous because it integrates molecular and clinical

MammaPrint, our nomogram is
information, potentially enhancing clinical applicability in
diverse patient populations.

Nevertheless, wvalidation in external cohorts and
prospective clinical studies is essential before clinical
implementation. Future studies should also explore the
biological functions of these 9 IncRNAs in breast cancer
pathogenesis, which may uncover novel therapeutic

targets.
CONCLUSION

This study identified a novel 9-IncRNA signature with
strong prognostic value for breast cancer patients. By
integrating this molecular signature with age, we
developed a predictive nomogram that demonstrated
excellent accuracy and reliability in estimating survival.
This tool holds promise for guiding personalized
treatment decisions and improving patient outcomes in
breast cancer management.
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