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ABSTRACT 

The compression sensing reconstruction of the stitching image is important for the communication of autonomous 
driving, intelligent vehicles, and unmanned aerial vehicles (UAV). A compression sensing reconstruction method for the 
stitching image is proposed. The proposed compression sensing reconstruction method contain: image stitching method, 
deformable convolution module, SCNet, and deformable deconvolution module. The added deformable convolution 
module can extract the features of the stitching image reasonably due to image distortion. The added deformable 
deconvolution module can make the stitching image and the reconstructed stitching image maintain consistency. 
Experimental results show the reconstruction SSIM and PSNR of the proposed method is better than the image stitching 
method and the SCNet. The reconstruction stitching images also has better visual effects. 

INTRODUCTION 

The compression sensing reconstruction of stitching 
images is important for the communication of autonomous 
driving, intelligent vehicles, and unmanned aerial vehicles 
(UAV). The compression sensing reconstruction of the 
normal image has been well researched. The compression 
sensing reconstruction methods of the normal image can 
be divided two categories: 1) no-deep-learning-method and 
2) deep-learning-method.  

To obtain the reconstruction results of larger field-of-view 
(FoV) images, the images need be stitched. The image 
stitching methods can also be devided into two categories: 
1) no- deep-learning-method and 2) deep-learning-method.  

The stitching images can obtain larger field-of-view (FoV) 
compared with normal images. Therefore, the 
compresseion sensing reconstruction of stitching images  

can obtain larger reconstruction images compared with 
the compression sensing reconstruction of normal 
images. A compression sensing reconstruction method 
for the stitching image is proposed. The proposed 
compression sensing reconstruction method contain: 
image stitching method, deformable convolution 
module, SCNet, and deformable deconvolution module. 
The added deformable convolution module can extract 
the features of the stitching image reasonably due to 
image distortion. The added deformable deconvolution 
module can make the stitching image and the 
reconstructed stitching image maintain consistency. 
Experimental results show the reconstruction SSIM and 
PSNR of the proposed method is better than the image 
stitching method and the SCNet. The reconstruction 
stitching images also has better visual effects. 
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 MATERIALS AND METHODS 

1. The Compression Sensing Reconstruction 

Methods of the Normal Image 

no-deep-learning-method 

At present, researchers in the field of compressive sensing 
have proposed many methods that can accurately 
reconstruct the original data, mainly divided into three 
categories: convex optimization methods Candès et al. 
(2006), greedy methods Needell et al. (2010), and 
combinatorial methods Khan et al. (2018). Among them, 
greedy methods have been widely used. Common greedy 
methods include: Orthogonal Matching Pursuit (OMP) 
Tropp et al. (2007), Regularized OMP (ROMP) Yang et al. 
(2015), Compressive Sampling Matching Pursuit 
(CoSaMP) Needell et al. (2009), Subspace Pursuit (SP) Dai 
et al. (2009), Stagewise OMP (StOMP) Marques et al. 
(2018), and Sparsity Adaptive Matching Pursuit (SAMP) 
Ba et al. (2010), etc. 

deep-learning-method 

Chen et al. (2025) proposed a compression sesning 
reconstruction method combining SCL and SCNet. Yang 
and Yuan et al. (2023) designed a ultra-lightweight image 
compressive sensing reconstruction method based on 
knowledge distillation. Chen and Zhang Chen et al. (2024) 
proposed a practical compact deep compressed sensing 
method. 

2. The Image Stitching Methods of Normal Images 

no-deep-learning-method 

The no-deep-learning-method for the image stitching 
mainly caontains the step: 1) the feature extraction, 2) 
feature matching, 3) homograph transformation, and 4) 
image blending. 

deep-learning-method 

Zhu et al. (2019) improved a novel panorama generative 
model for synthesizing realistic and sharp-looking 
panorama, which does not require a large number of 
labeled ground-truth data. Sumantri et al. 2020 designed a 
learning-based approach the reconstructs the scene in 
360°×180°from a sparse set of conventional images. Wu 
et al. 2023 tackled the problem of synthesizing a ground-
view panorama image conditioned on a top-view aerial 
image, which is a challenging problem in this domain. 

3. A New Compression Sensing Reconstruction 
Method of the Stitching Image 

The image stitching method uses the method propsoed by 
Ribeiro et al. (2021), which is implemented in python. The 
proposed compression sensing reconstruction method 
contain: image stitching method, deformable convolution 
module, SCNet, and deformable deconvolution module. 

 

The added deformable convolution module can extract 
the features of the stitching image reasonably due to image 
distortion. The added deformable deconvolution module 
can make the stitching image and the reconstructed 
stitching image maintain consistency.  

The propsoed method is named DCM-DDM-SCNet. 

RESULTS 

1. The Ablation Experiments 

The traning epoch of the SCNet is 200, the learning rate is 
0.0001, the block size is 33, and the number of features is 
32. 

Figure 1: The Reconstruction Image Scene 1 

 

(a) Stitching Image     (b) IS+SCNet       (c)IS+DCM+SCNet+DDM 

Figure 2: The Reconstruction Image Scene 2 

 

(a) Stitching Image      (b) IS+SCNet (c)IS+DCM+SCNet+DDM 

The reconstruction SSIM and PSNR is shown in Table I. 
From Table I, the image stitching method+SCNet is 
named IS+SCNet, and the image stitching 
method+deformable convolution 
module+SCNet+deformable deconvolution module is 
named IS+DCM+SCNet+DDM.  

From Table I, in CS ratio 0.01, the SSIM and PSNR of 
IS+DCM+SCNet+DDM are better than the SSIM and 
PSNR of IS+SCNet. From Table I, in CS ratio 0.04, the 
SSIM and PSNR of IS+DCM+SCNet+DDM are also 
better than the SSIM and PSNR of IS+SCNet. 

2. The Reconstruction Time 

The reconstruction time and the image stitching time are 
shown in Table II and Table III respectively. The FPS of 
SCNet is 11 and the FPS of DCM+SCNet+DDM is 10.  

The image stitching time of Scene1 is 0.33s and the image 
stitching time of Scene2 is 0.34s. 
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Table 1: The Reconstruction Result 

 
SSIM  

(CS Ratio:0.01) 

PSNR 

(CS Ratio:0.01) 

SSIM 

(CS Ratio:0.04) 

PSNR 

(CS Ratio:0.04) 

IS+SCNet 58.35 14.17 62.41 16.43 

IS+DCM+SCNet+DDM 60.45 15.39 63.26 18.58 

 

Table 2: The Reconstruction Time 

 FPS 

SCNet 11 

DCM+SCNet+DDM 10 

 

Table 3: The Image Stitching Time 

 Image Stitching Time (s) 

Scene1 0.33 

Scene2 0.34 
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